A
-]

Technical Research in Advanced Air Transportation Concepts &
Technologies (AATT)

ATM Modeling and Simulation Architecture Study
AATT RTO 70

November 14, 2001

Prepared By

Science Applications International Corporation
Simulation and Information Technology Operation
1100 N. Glebe Road, Suite 1100
Arlington, VA 22205

Technical POC
Jesse S. Aronson, P.E.
703-907-2553 / aronsonj@saic.com

Prepared for NASA Ames Research Center under Contract NAS2-98002

SAIC

ATM Modeling and Simulation Architecture Study

AATT RTO 70

Table of Contents

AATT RTO 70 1
Executive Summary 1
1 Introduction 2
1.1 Study Goals 2
1.2 Methodology 3
2 Scenario Analysis 4
2.1 Use Cases 4
2.2 FEast-time Conceptual Trades 4
2.3 FEast-time Detailed Evaluations 5
2.4 Real-Time Virtual Simulations 6
2.5 Use-Case Driven reguirements 6
3 Simulation Architecture 9
3.1 Goals of an Architecture-based Approach 9
3.2 Development of a reference run-time architecture 10
3.3 Description of the architecture 10
3.4 Legacy Software integration / reuse 16
4 Technology Reviews 18
4.1 Simulation/Modeling Engines 21
4.2 Simulation Interoperability/Integration 29
4.3 Analysis Architectures 33
4.4 Domain Modeling 39
5 Conclusions 40
5.1 Overall Architecture 40
5.2 Use Case 1: Fast-time Detailed Analysis 42
5.3 Use Case 2: Fast-time Conceptual Trades 43
5.4 Use Case 3: Real-time Virtual Simulators 43
5.5 Recommended Next Steps 44
Glossary and Acronyms 46
Bibliography 48

SAIC

ATM Modeling and Simulation Architecture Study
AATT RTO 70

Executive Summary

The nation’s air traffic control system faces many challenges in accommodating continuing
growth in air traffic, necessitating development of new operational concepts for air traffic
management. Design of such novel concepts can be greatly facilitated through the use of
simulation tools to address a variety of questions including system-level policy assessments,
national economic impact of new technologies, regional flow performance, infrastructure
constraints and human performance. Recognizing the growing requirement for large-scale, NAS-
wide simulation tools, NASA commissioned a study of simulation run-time architectures. The
objective of the study was to provide background information required to assess the software
architecture that will be required to create a framework for a simulation system that can support
simulation of the entire NAS and all elements within it to allow exploration of system-wide
impacts. The study included two major tasks. The first task was to survey several government
simulation communities to identify applicable simulation architectures, while the second task
involved evaluating technologies identified under Task 1 for their applicability to three Use Cases
including 1) performance of conceptual trade evaluations covering many issues and metrics; 2)
provision of detailed evaluations from many viewpoints of changes to the system prior to their
implementation; and 3) conduct of real-time and non-real-time analyses of system-wide
performance.

The study formulated a reference architecture and found that all three Use Cases could be satisfied
by instantiations of that architecture. The backbone of the postulated architecture is the High Level
Architecture for Modeling and Simulation (HLA) which was developed by the Department of
Defense to address many of the same challenges in scalability, composition, integration and reuse
now faced by NASA and which has achieved widespread acceptance within the DOD. The study
also found that to varying degrees the components of the simulation architecture could be satisfied
by existing technologies, perhaps with some adaptation to the particulars of the NAS domain.

The major challenges identified in implementation of the architecture lie in augmenting the current
capabilities of the HLA to better support the requirements of analytical simulation and in fostering
development of a collaborative, architecture-based approach within the NASA simulation
community.

ATM Modeling and Simulation Architecture Study Page 1

SAIC

1 Introduction

1.1 Study Goals

The nation’s air traffic control system faces many challenges in accommodating
continuing growth in air traffic. Among these challenges are to accommodate growth in
airspace system utilization while preserving and enhancing system safety, provide
airspace system users with flexibility and efficiency in the use of airspace resources and
reduce system delays. Accomplishment of these goals requires creative design and
enhancement of airspace operations, and these design activities need to be supported by
design tools including robust, flexible simulations.

The Aerospace Operations Modeling Office at NASA Ames is engaged in several
activities in the area of novel NAS operational concepts, requiring non-real-time
modeling of the Air Traffic Management (ATM) system. Current activities, under the
Advanced Air Transportation Technologies (AATT) Project and the Quiet Aircraft
Technology (QAT) Program, model specific tools or functions within segments of the
National Airspace System (NAS). Consideration of new concepts requires adequate and
credible models to satisfy three Use Cases as follows: 1) performance of conceptual trade
evaluations covering many issues and metrics; 2) provision of detailed evaluations from
many viewpoints of changes to the system prior to their implementation; and 3) conduct
of real-time and non-real-time analyses of system-wide performance.

Simulation in support of these Use Cases will address a variety of questions that include

system-level policy assessments, national economic impact of new technologies, regional
flow performance, infrastructure constraints and human performance. Further, there must
be feedback up and down between these five levels so that policy decisions derived at the
highest level are accommodated in the more detailed levels, such as human performance.

Study of new operational concepts carries with it several key requirements. First, since
many of the envisioned changes have NAS-wide impact, the tools used to evaluate these
concepts must be NAS-wide in scope. To do this, the tools must support mixed fidelity,
with insets of high fidelity (in, for example, regions, models, or human behaviors) where
needed. Second, since new concepts by definition are a departure from current practice,
the tool set must be flexible to easily support changes in models. The modeling system
will need to incorporate existing codes and so should include mechanisms for legacy
code integration.

The intention of this study is to provide the background information required to assess the
software architecture that will be required to create a framework for a simulation and
modeling system that can support simulation of the entire NAS and all elements within it
to view system-wide impacts. The study includes two major tasks. The first task is a
survey to identify applicable simulation technologies. This task included a starting list of
technologies from several communities. The areas to be surveyed specifically included
architectures used by Defense Advanced Research Project Agency (DARPA),
Department of Defense (DOD), Department of Transportation (DOT), and other agencies
that could be adapted for ATM applications. It shall included the DOD High Level

ATM Modeling and Simulation Architecture Study Page 2

Architecture Run-Time Interface framework that is proposed for the FAA's Aviation
Integrated Reasoning Modeling Matrix (AIRMM), the Georgia Tech Reconfigurable
Flight Simulator, the SPEEDES and SWARM simulation engines and the FAA Aviation
System Analysis Capability. During the course of the study the list was expanded to
include several other DOT technologies, COTS simulation frameworks and FAA domain
modeling efforts.

The second major task focuses on evaluation of these technologies against NAS-wide
analytical simulation requirements and synthesis of one or more simulation architectures
to satisfy the three domain Use Cases. For each technology, both the strengths and
limitations of the candidate technologies were assessed and their place in the required
architectures was identified.

This study focuses on run-time aspects of simulation. As shown in Figure 1.1.1, the use
of simulation as part of an analysis effort starts with planning and setup tasks, continues
through execution, and finishes with analysis and archiving of results. In addition,
independent of any particular study there are long-term tasks to build and maintain a
simulation system, including development of the execution environment and model and
data management. Each of these phases in simulation utilization has its own
characteristics and requirements. The direction for this study was to focus on simulation
execution, that is, the pieces required to run the simulations, and so the other process
steps in the simulation lifecycle are treated only where they intersect with run-time.

System Architecture:
Model/Data/Knowledge Management, model toolbox, etc.

Exercise
Generation
Architecture

Runtime
Architecture

Analysis
Architecture

Identify Define
Study AnaIyS|s Plan Sf)rrr:ﬂl%l,:lroe
Concept & Scenario

/’ \
/ |
i \ |
\ Iterate as needed !

|

Multiple analyses ——————

Figure 1.1.1: Simulation Lifecycle — a family of architectures

1.2 Methodology

A system engineering methodology was used in performing the study. Any assessment is
contingent upon having a set of evaluation criteria and therefore as a first step the Use

ATM Modeling and Simulation Architecture Study Page 3

Cases were expanded to determine the requirements they impose on the simulation tool
kit. The results of this requirements analysis are given in Section 2.

The second step in the study was formulation of a reference simulation architecture based
on the Use Case requirements. This conceptual reference architecture focuses on the top-
level functions that a simulation run-time system must provide. The goal of formulating
the reference architecture was to provide a consistent framework within which to evaluate
the capabilities of each of the candidate technologies without delving into the details of
particular technologies or physical instantiations. Section 3 describes the top-level
reference architecture.

With the establishment of a reference architecture, the next step in the study was to
evaluate existing technologies to determine their applicability in implementation of the
various architectural components. Section 5 provides evaluations of each of the candidate
technologies, including a mapping of each technology into the reference architecture.
Finally, Section 5 describes a recommend architectural approach for ATM simulation
based on the requirements derived in this study and the capabilities of available
technologies.

2 Scenario Analysis

2.1 Use Cases

The direction for the study included three types of modeling applications, or Use Cases,
corresponding with types of analyses performed by NASA: 1) performing fast-time
conceptual trade evaluations covering many issues and metrics; 2) providing non-real-
time detailed evaluations from many viewpoints of changes to the system prior to their
implementation; and 3) conducting real-time human-in-the-loop analyses with virtual
simulation/simulator components. The three Use Cases share many common attributes,
however their varied characteristics result in unique requirements for each Use Case. This
section examines the Use Cases to determine their individual and shared requirements.

2.2 Fast-time Conceptual Trades

The first Use Case is that of Fast-Time Conceptual Trades. This application typically
involves using low fidelity, rapidly configurable, fast-executing models. The goals of
simulation at this level are to gain an understanding of the impact of a new concept or
technology, to refine partially defined concepts and to provide broad-brush evaluation in
support of policy development.

An example of this Use Case would be evaluation of the national flow and safety impacts
of the Automated Airspace Concept (AAC). [Er2001] In this application the example
inputs and excursions might include minimum separation and the percentage of aircraft
equipped for AAC. Example metrics collected could include the separation achieved,
location-specific and national flow statistics, flight time and path statistics.

This Use Case has several key characteristics. First, scenarios can be up to NAS-wide in
scope, that is, thousands of concurrent flights, ATM sectors, and other NAS elements.
The simulation infrastructure must be able to support this large number of simulated

ATM Modeling and Simulation Architecture Study Page 4

entities, including multiple aspects of each (e.g., physical movement through both en
route and terminal airspace as well as financial implications of routing changes), albeit at
low fidelity. Second, despite the breadth of scenarios, this type of application requires
rapid turnaround and evaluation of excursions, meaning that scenario and simulation
setup must not be overly complex.

In current practice, this type of simulation typically consists of a number of simulations
strung together via integrated data (for example, a capacity model feeding a delay model
feeding a cost model and so on). In the future simulations may continue to be executed in
this mode, however the architecture should also support concurrent execution of
simulations.

2.3 Fast-time Detailed Evaluations

The Fast-time Detailed Evaluations Use Case involves applying detailed models to gain
close understanding of the impact of a new concept or technology. The goal of this type
of simulation is to perform detailed concept analysis within the context of the entire
NAS. Consequently, this application may contain mixed fidelity models, that is, detailed
representation of the concept under study surrounded by a lower fidelity context. The
boundaries between fidelities can be geographic (e.g., a higher fidelity sector in the midst
of a lower fidelity center), functional (e.g., high fidelity representation of TRACON
airspace surrounded by lower fidelity en route airspace models) or physical (e.g., mixed
fidelity representations of aircraft dynamics). Scenarios for this type of application range
from localized scope (e.g., a single airport or sector) up to NAS-wide scope.

An example of a Fast-time Detailed Evaluation might be a benefits assessment of Direct
To (D2) routing under current and future demand scenarios and varying weather. In this
example aircraft movement through some part of the airspace would be modeled at high
fidelity in order to track flight path and time statistics under different routing regimes.

This Use Case has a number of key characteristics. First, the combination of scope and
fidelity required for detailed evaluation scenarios can lead to high computational
requirements and therefore to the use of multiple CPUs to support the scenario. The
multiple CPUs can take the form of high performance computing (supercomputers or
clusters of computers) or multiple independent computers working together (but possibly
running a heterogeneous mix of simulations) to form a representation of the airspace.

Second, the use of mixed fidelities implies the ability to transfer representation of
simulated entities between the different simulations which compose the simulated
scenario. For example, a low fidelity en route aircraft may need to transition into a higher
fidelity simulation as it crosses a boundary into high fidelity TRACON airspace.

Third, Detailed Evaluations can have large input and output data volumes. Typically,
Detailed Evaluations make use of complex input data, for example, historical ETMS
flight data and RUC wind values, and produce detailed measures and metrics such as
detailed trajectories, flight time over route, point of closest approach and conflict
statistics.

ATM Modeling and Simulation Architecture Study Page 5

2.4 Real-Time Virtual Simulations

The last Use Case is Real-Time Virtual Simulations. The key differentiators of such
simulations are that they typically run in real-time and involve human actors who play
roles in the virtual world created by the simulation. Human players typically interact with
the simulation via partially or completely immersive environments, that is, ones that
mimic one or more aspects of the user interface and/or sensory environment of equivalent
real-world stations. Consequently, Virtual simulations often include components such as
Vertical Motion Simulators, cockpit or controller workstation mockups or other large-
scale immersive environments such as NASA’s Future Flight Central 360" airport tower
simulator.

Real-Time Virtual Simulations are used for a number of purposes, including training,
human factors analysis (evaluation and design of human/machine interfaces), human
performance studies (evaluation of human performance under varying conditions, stimuli
and workload) and evaluation of operating procedure changes.

Virtual simulations typically focus on a more limited domain scope than the other two
Use Cases based on the fact that a human participant can only directly observe a small
part of the NAS at any given time. On the other hand, Virtual simulations must represent
provide a richer representation than is found in the other Use Cases, including visual,
aural, motion and haptic models. Thus, Virtual simulations typically contain very high
fidelity models of small portions of the NAS, augmented by medium fidelity models to
provide operational context (for example, an immersive cockpit simulator linked with
medium fidelity simulations of nearby aircraft). Likewise, since these simulations often
have the goal of observing the behavior of the human participants, data capture includes
not only simulation data but also human interaction with the system (activity traces, audio
and video recording of participants, etc.).

The first key characteristic of this Use Case is the ability to operate in close
synchronization with real, or “wall clock” time so that the human participants cannot
perceive any difference or delay relative to real-time. The second characteristic is the
need to support the multi-sensory representations needed to create believable virtual
environments. This has an implication on the volume of data needed for initialization and
the quantities of data passed around during run-time. The third characteristic relates to
data collection, where a large number of parameters may need to be collected from each
simulator, possibly in coordination with audio and video streams. Mitigating the
increased data requirements of these two characteristics is the fact that only a small
portion of the NAS is typically represented.

2.5 Use-Case Driven requirements

Figure 2.5.1 summarizes the characteristics of the three Use Cases. It is understood that
NASA is separately performing more detailed studies on the computational requirements
of various types of simulations; the present table serves only as a general categorization
of simulations required to support the Use Cases. The table has a number of rows
representing the various characteristics of the architectures, as follows:

o Distributed processing: The number of computers and separate simulations
involved, connected by networks.

ATM Modeling and Simulation Architecture Study Page 6

o0 Variability of Scenario Models and Data: The extent to which scenario data and
configuration typically change from run to run of the simulation. This provides an
indication of how much scenario/simulation setup is required for each run. This is
also an indication of how much the composition of models will change (e.g., “for

analysis ‘A’ we need a 6 DOF motion model but for analysis ‘B’ we only need a 3
DOF model™).

o Complexity of input data: The volume and number of attributes for both databases
(terrain, weather, ETMS data) and scenario-specific data.

o Volume of data collected: The volume of data collected from each run of the
simulation.

0 Volume of data exchanged: The volume of data that would be exchanged between
different inter-connected simulations at run-time.

o Total computational complexity: A measure of the overall computing power
needed. Differs from volume of data in that computational complexity focuses on
CPU - a simulation on one supercomputer may have high computational
complexity but low volume of data exchanged.

ATM Modeling and Simulation Architecture Study Page 7

SAIC

Use Case:
Characteristic:

Distributed Processing

Variability of Scenario
Models and Data
Complexity of input data
- Databases
- Scenario Data

Volume of Data Collected

Volume of Data Exchanged
Between Simulations

Total Computational
Complexity

Fast-Time Conceptual Trades Fast-Time Detailed

Small number of low fidelity
simulations

High

Low
Low
Low
Low

Low - Medium

Evaluations
Potentially large heterogeneous
cluster of simulations

High

High
High
High
High

High

Figure 2.5.1: Summary of Requirements for each Use Case

Real-Time Virtual Simulators

Small number of high fidelity
simulators augmented by
medium fidelity simulations

Low — Medium

High
Medium

Medium (special case of
audio/video)

Medium

Medium — High

ATM Modeling and Simulation Architecture Study

Page 8

SAIC

3 Simulation Architecture

3.1 Goals of an Architecture-based Approach

Having delineated the requirements of the three Use Cases, the next step involves
determining in a general sense a system that satisfies those requirements, that is, creating
a reference simulation architecture. Taking this approach satisfies several of the goals of
the study: first, it facilitates determination of how many architectural variants are
required to satisfy the Use Cases, and secondly, it provides a framework for evaluating
the specific technologies examined in the study. This section describes the components of
the architecture in general. Section 5 describes how the architecture serves each Use Case
and how the technologies of Section 4 can be applied to creating implementations of the
architecture.

Taking an architecture-based approach has benefits beyond the scope of the study and
into system implementation. In general, implementing a system from an architecture
reduces the effort in creating and using software systems. In particular, in a simulation
community with multiple independent developers, architectural guidelines make reuse of
models and infrastructure more straightforward, providing the ability to “plug and play”
software components via standardized interfaces. The benefits of such an approach have
been demonstrated within the Department of Defense, where the High Level Architecture
(described further in Section 4.2.1) has been successfully employed to create large
simulated worlds from independently developed simulations, where commonly accepted
simulation frameworks (the function of a simulation framework is defined in Section 3.3)
have facilitated infrastructure and model reuse and where common data models such as
those of the High Level Architecture and the Synthetic Environment Data Representation
and Interchange Specification (SEDRIS) [SE2001] have enabled interoperability.

An architecture can, in fact, form the basis of a simulation community. First, the
composition enabled by an architecture creates a “greater good” which fosters
community participation — that is, the opportunity for reuse and sharing of software and
data encourages collaboration. Second, architecture allows planning across multiple
projects for development of a product line. In this case, whereas no single project may
have the resources to “do it all”, project sponsors can coordinate to ensure that various
projects in the aggregate create a greater whole. This type of allocation can be across
technical lines (e.g., project A produces simulations, project B produces data collection
tools) and/or domain lines (e.g., project A produces simulations of the en route airspace,
while project B produces simulations of TRACON airspace). Again, the DOD experience
is that communities develop around architectural and data standards’.

! See, for example, the HLA SISO community (http://www.sisostds.org) and the SEDRIS community
(http://www.sedris.org).

ATM Modeling and Simulation Architecture Study Page 9

3.2 Development of a reference run-time architecture

It is important to point out that there can be many dimensions to an architecture.? For
example, an architectural model can include:

o A technical architecture, comprising an abstract system specification consisting
primarily of functional components described in terms of their behaviors and
interfaces and component-component interconnections,

o A domain architecture containing a description of the domain elements being
simulated and the information which is exchanged among those elements,

0 A software architecture defining the software components needed to implement
the functional elements of the technical architecture, and

o0 A systems architecture describing the systems solution (physical connection,
location, and identification of computers, networks, etc) used to instantiate the
technical architecture in order to simulate the elements represented in the domain
architecture.

For the purposes of the study, a technical architecture is most appropriate form of
reference architecture, with domain architecture included as an adjunct to technical
architecture. A technical architecture allows specification of the functions that the
components of the system must perform without getting into implementation details.

It should also be noted that an overall system may have a family of architectures. As
shown in Figure 4.2.1, a the simulation lifecycle includes a number of phases. Each of
these phases can have distinct architectures, from collaborative, human-centered
environments at the front-end through scenario setup tools and simulation execution
environments. The scope of this study is limited to run-time execution of simulations and
so the reference architecture is primarily focused on the run-time aspects of simulation.

3.3 Description of the architecture

A run-time architecture for simulation must provide the functions required for the
simulation to execute. For even the most basic standalone simulation this includes basic
operations such as time advancement and flow of control within the software. For
distributed simulations the set of functions required at run-time grows to include
coordination and control of multiple independently executing simulation programs. For
an analytical simulation the list of functions expands further to include capture and
storage of data for use in assessment.

2 For the many nuances of what is meant by architecture see, for example,
http://www.sei.cmu.edu/architecture/definitions.html

ATM Modeling and Simulation Architecture Study Page 10

The reference run-time architecture developed for this study, shown in Figure 3.3.1,
provides these functions. The remainder of this section describes each of the components
of the architecture. It is important before proceeding to note that in the following
discussion the term simulation denotes an executable software program whereas model is
used to denote a representation of some physical or behavioral aspect of the domain. As
shown in the architecture diagram, a simulation contains a collection of models; for
example, an airplane simulation may be composed of models of the dynamics of the
airframe, the behavior of the pilot, etc. A simulation system is a collection of one or more
simulations and tools designed to work together — an instance of the architecture.

Dzl . Models and
Models .
: Simulators
e, . Published Interface
S | | Modeling Framework
Initialization |:> ‘f:
-~ i \
; . . . 3
P N El Simulation Engine g
Data <:| (possibly including 3 | Simulation
Logging . = Execution
multiprocessor 2 | Management
~__ . .] 9
ﬂ coordination) &

i — Published Interface)
LA_'III'ao_Iofsls Integration/Communications
Framework

Visualization

| Published Interface

Figure 3.3.1: Reference Run-time Architecture

Within this architecture, utilities such as execution management tools, graphical displays,
simulation gateways and the like exist at a peer level with simulations, making use of the
same communications and coordination mechanisms as the simulations.

3.3.1 Simulation Execution Management

This function is shown in Figure 3.3.1 as Simulation Execution Management coupled
with the Initialization and Data Logging databases.

Simulation Execution Management (SEM) covers control of the execution of the
simulation system. The basic SEM operations are start/stop, pause/resume and
save/restore. For a single simulation these can be command line or GUI-based functions,
which control the execution of a single program. For a distributed simulation SEM is
typically a distinct software application where start/stop must ensure coordinated startup
of multiple programs, ensuring that simulation time doesn’t start advancing until all
participating simulations are fully initialized. Likewise, pause/resume must ensure that

ATM Modeling and Simulation Architecture Study Page 11

the various programs involved operate in a synchronized fashion to ensure consistency

when resuming from a paused or saved state. Save/restore must ensure consistency of
data as well.

Simulation Execution Management can also include multiple run control. Analytical
simulations are used for Monte Carlo analyses meaning that they are run multiple times
with stochastic variation of parameters. Analytical simulation studies may also involve
multiple sets of Monte Carlo runs to assess sensitivities of output measures to input
parameters (for example, capacity as a function of minimum in-trail spacing). A
sophisticated Simulation Execution Management controller can automate the process of
Monte Carlo simulation. Some execution management systems go as far as to
automatically perform optimizations or backsolving against input parameters (see ASAC,
Section 4.3.1, for an example of such a controller).

Simulation Execution Management also provides the linkage between run-time and the
simulation phases which precede and follow it. It is SEM that invokes Simulation
Initialization using data created in the pre-run-time scenario generation/simulation
configuration phases and it is SEM that controls the collection of data to support post-
run-time analysis and assessment.

Simulation Initialization is a part of Simulation Execution Management, which
configures the simulation for execution of runs. At its most basic, Initialization allows a
simulation to read parameters from some sort of configuration file generated during
scenario generation/simulation configuration. For a distributed simulation this function
can be much more complex. It can include distributing data to all of the simulations,
which will be executing, assigning roles to each one (that is, controlling which domain
elements will be simulated by each simulation program and computer), and configuring
communications (network parameters) among the simulations. In Internet gaming where
there is no central coordination among participants, simulation initialization typically
includes verification that the various players are mutually compatible. In a related
function, simulation initialization can distribute software to simulation computers to
ensure that each has the appropriate versions of models.

Data Logging is the flip side of Simulation Initialization, capturing output data from the
simulation system for use in downstream analyses. Data Logging in a distributed
simulation environment must be able to merge multiple streams of data while preserving
the temporal ordering. Consequently, Data Logging is controlled by SEM but it typically
implemented in close coordination with the Simulation Engine.

SEM can also include fault tolerance features such as load balancing and automated
transfer of simulated entities from one computer to another upon failure of a simulation
computer.

3.3.2 Simulation Engine
This function is shown in Figure 3.3.1 as the Simulation Engine.
The Simulation Engine provides the functions necessary for the simulation to execute

once it has been initialized. This component controls execution of the simulation’s
collection of infrastructure functions and models. This includes making sure that the

ATM Modeling and Simulation Architecture Study Page 12

SAIC

temporal order of execution is maintained, even across the vagaries of multiple threads of
control, networked communications and loosely synchronized computers.

The most basic simulation functions are time and event management. There are two basic
types of simulations, those in which scenarios evolve based on increments of time and
those, which are driven by events. Time-based simulations step time forward in
increments and evaluate models at each new time. Discrete event simulations play out
simulations as a sequence of events, where an event typically involves interactions
between simulated entities and therefore invocation of models. The simulation engine
advances the simulation by executing each event in turn. Events carry with them time
tags and so time moves forward based on the time tags of the events.

Discrete event simulation differs from a time-stepped simulation in that only significant
events are simulated. For example, if an airplane flight were simulated from takeoff to
landing in a time-stepped simulation, the position of the plane would be updated at every
cycle of the simulation. In a discrete event simulation, at the most general level there
would be an event corresponding to the takeoff of the plane and an event corresponding
to the landing of the plane. In between, it is assumed the plane flew its route. The plane’s
position can be queried at any point during the flight through further discrete events and
events can be canceled if other objects affect the time-line of the plane. With proper
tuning this scheme can result in much lower Central Processing Unit (CPU) use and
much more efficient use of CPU resources than a time-stepped approach.

In distributed environments, synchronous execution of simulations becomes complex.
Delays in passing time steps or event messages through the network can result in
incorrect time ordering (for example, a pilot human behavior model may make a decision
based on information available at a time however subsequently get a message which
should have influenced the decision). A whole sub-field of the simulation domain, PADS
(parallel and discrete event simulation) has evolved to study the optimal application of
multi-processor environments to simulations.

The simulation engine provides time/event management, invoking data distribution (see
Communications Framework below) as required and managing process synchronization
for multi-threaded or otherwise distributed simulations.

3.3.3 Modeling Framework
This function is shown in Figure 3.3.1 as the Modeling Framework.

Many simulation engines provide a set of tools that make it easier to develop models
within the engine. Modeling Frameworks provide a layer of insulation above the raw time
and event management features of the simulation engine allowing modelers to focus on
representing the domain rather than on the computational aspects of simulation.

The Modeling Framework generally imposes a certain software model on the simulation
developer. In many modern simulation engines, this model is object-oriented. Typically,
the Modeling Framework provides a set of base classes which encapsulate simulation
engine functions. Models must inherit from or use objects derived from these base

3 See http://www.cs.utsa.edu/research/ParSim/ as an example.

ATM Modeling and Simulation Architecture Study Page 13

classes. Implementing models as methods on such objects constrains the modeler but
typically provides as a result transparent integration with the underlying engine’s time,
event and memory management. Object-oriented modeling frameworks typically
represent the world as collections of aggregated objects, for example, modeling air
operations as a collection of airplanes, where each airplane object comprises a set of
model objects.

Other frameworks go beyond basic object-oriented concepts in an attempt to more closely
match the modeling paradigm to the characteristics of the physical world. These agent-
oriented modeling frameworks not only model the world via collections of aggregated
objects but also impose constraints on the way objects interact with one another to more
closely match real-world channels of communication.

In summary, the Modeling Framework makes it easier for modelers to use the capabilities
of the simulation engine and, by providing standard interfaces, foster reuse of simulation
models.

3.3.4 Models and Simulators

This function is shown in Figure 3.3.1 as the collection of Models and Simulators
components.

Models are the pieces of software and/or hardware that represent portions of the NAS
within the simulation system. For analytical simulation these are primarily blocks of
software that model some physical or cognitive process. Examples include motion and
fuel consumption models for aircraft, models of communications channels and human
behavior models. For Human in the Loop simulation this set of software can also include
interfaces to human role-players. Such interfaces may mimic real-world systems (such as
in a cockpit simulator). Last, these blocks of code may include interfaces to hardware or
wrapped legacy software to allow these elements to be incorporated into a simulation
system.

Models and simulators are written to be compliant with the interfaces of a Modeling
Framework/Simulation Engine. As a result, they are easily reused within that same
framework, while migration to other frameworks requires adaptation of the model’s
algorithms to the interfaces of the new framework.

3.3.5 Integration/Communications Framework
This function is shown in Figure 3.3.1 as the Integration/Communications Framework.

The Communications Framework provides inter-process communications and
coordination between the distinct applications and execution processes of the simulation
system. Much as the Modeling Framework hides the details of the simulation engine from
the modeler, the Communications Framework abstracts the details of inter-process
communications from the simulation engine.

As previously described, maintaining coordination across multiple independently
operating simulations or across parallel processors within a simulation is a complex task.
It involves extending the time and event management functions of the simulation engine

ATM Modeling and Simulation Architecture Study Page 14

across multiple processes without allowing network performance to introduce
perturbations into the simulation. The Communications Framework handles this
coordination across multiple processors and computers, supplying integration
functionality across multiple heterogeneous time and event management
implementations.

As simulations grow in size, efficient utilization of networking resources becomes
important. In a small simulation system it may be tolerable to broadcast information to
the entire cluster of simulations and tools, however in large high performance systems
such a practice may saturate the network or the simulation computers’ ability to handle
network traffic. For large simulation systems the Communications Framework provides
efficient routing of data, delivering messages only to appropriate recipients. The
Communication Framework may provide different delivery mechanisms (guaranteed,
best-effort), different quality-of-service options, different topologies (client/server vs.
peer-to-peer) and different data distribution mechanisms (such as publish/subscribe).

As part of implementing the above roles the Communications Framework abstracts from

the simulation engine developer details of communications mechanisms such as CORBA
or sockets, networking protocols such as TCP and UDP and network routing mechanisms
such as multicasting.

3.3.6 Domain Models
This function is shown in Figure 3.3.1 as the Domain Models.

Domain models are not an active component of the simulation system however they are
an important part of developing simulation systems. Those who have run afoul of
simulation interoperability problems might interpret the Domain Models element in
Figure 3.3.1 as a dark cloud hanging over simulation, however in fact this is the glue that
holds simulations together.

Domain models are a representation of the area of the real world that is under study. A
domain model represents the set of requirements that are common to systems within a
product line, in this case, to all the components of a simulation system. The requirements
represented in a domain model include:

o Definition of scope for the domain: the real-world elements that will be modeled
within the simulation system (737-200, ADS-B system, traffic flow management
decision-making, ...)

o Information or objects: the way the real-world elements are decomposed within
the simulation (for example, an engineering simulation may treat an airplane wing
as a collection of many pieces, while an operational simulation may treat the
whole aircraft as a single item).

o0 Features or use cases: The aspects or data associated with each object, and as a
result with each model. As shown in Figure 3.3.6.1, depending on analysis needs
a single entity type such as an airplane can be represented by many different sets
of features such as physical models, cost models, etc.

ATM Modeling and Simulation Architecture Study Page 15

o0 Operational/behavioral characteristics: The protocols involved with an domain
object (for example, a pilot model upon receiving a message from a controller

should acknowledge that message) and the behaviors associated with the object
(aircraft update their position as they move but do not change their tail number).

The most abstract form of a
Domain Model is called a
Conceptual Model (or
Conceptual Model of the
Mission Space in DOD
parlance) and defines a
common way of talking about
the domain for a particular
simulation community.
Conceptual Models define the
set of objects that could be
simulated, including their
interactions and hierarchical
decomposition.

*An investment

*An item occupying a point
in space, with a certain
appearance and motion
characteristics

+A generator of revenue

*A consumer of
maintenance, fuel and
operations dollars

A collection of structures
and engineering systems

Figure 3.3.6.1: Domain models representing several aspects
of an aircraft

Reference data models are a
more detailed Domain Model and describe the public attributes of each of the objects in a
Conceptual Model and protocols for exchanging data and messages. Reference data
models serve as a basis for simulation implementation and interoperability.

An Implementation Conceptual Model captures the previous models plus implementation
information and is a simulation developer's way of translating modeling requirements
(i.e., what is to be represented by the simulation) into a detailed design framework (i.e.,
how it is to be done), from which the software, hardware, networks (in the case of
distributed simulation), and systems/equipment that will make up the simulation can be
built. [Pa2001]

3.4 Legacy Software integration / reuse

Very few simulation devel opers have the luxury of developing entire systems from
scratch. In most casesit is both expedient and desirable to incorporate existing models
and data into new simulation systems. The structure of the architecture encourages both
legacy integration and reuse of simulation components once developed. Software reuse
can occur either through reuse of entire simulations as part of a new simulation system or
by integrating existing models within new simulations.

ATM Modeling and Simulation Architecture Study Page 16

Foreign Process Local Process

Peer Level

Integration Recoding

Wrapper
(Application
Gateway)

Remote
Method

« Reverse Engineer to

" * Reverse Engineer
determine control, re-

« HLA Invocation entrance ... « Design Reuse
« Develop code wrapper * New Implementation
« CORBA .
« SOAP
« etc.
N N ~ \ J
Federation Model-level reuse Re-implementation

Figure 3.4.1: Mechanisms for software reuse in simulation

As shown in Figure 3.4.1%, there are a number of paths to software reuse within the
architecture. The potentially least intrusive way to integrate complete legacy simulations
is via federation, or peer level integration of complete simulation applications through an
application gateway or by direct integration using some sort of integrating protocol.
Individual legacy models can be made accessible to a simulation by making the legacy
code callable through a remote method invocation protocol such as CORBA or SOAP.
Still tighter integration involves integrating legacy models with new simulations either by
integrating existing code as part of the same executable or via reverse-engineering and re-

el
—3
(0]
g £ Models and
7 2 Simulators
CORBA, ‘T
SOAP, etc. (4 RM & I Cross-language
Wrapper wrapper
Modeling Framework
Java RMI, platform-
specific cross-
language capabilities
Simulation Engine
c a o .
B0 (possibly including
o -
§ 2 multiprocessor
5 & S5 coordination)
583
S QE -
<% | Communications Integratlon/
Framework Communications
Wrapper
Framework
Figure 3.4.2: Reuse techniques within the reference architecture
* Adapted from [Or2001]

ATM Modeling and Simulation Architecture Study Page 17

implementing algorithms into a compatible form. Figure 3.4.2 shows how these various
approaches fit within the reference architecture.

Incorporation of legacy simulations through peer-level integration is shown in the figure
through the Adapted Legacy Simulation and wrapped Legacy Simulations. There are a
number of technical challenges involved in making independently developed legacy
simulations interoperate with one another. Simulations that were not specifically
designed for inter-operation typically use conflicting representations of the same
elements of the problem domain, or of the environment, or of the passage of time.
Different simulations may model overlapping aspects of the domain, making integration
difficult because one simulation’s representation of one of these overlapping elements
needs to be “turned off,” and that simulation must be altered to accept input from the
corresponding element represented in another simulation. All of these differences
between simulations need to be rationalized to create a useful analytic system. The two
cases shown in the figure differ in whether the reconciliation of conflicting control and
modeling structures across simulations has been resolved by adapting the legacy
simulation or whether a intermediary piece of software has been developed to serve as a
gateway between the new simulation system and the legacy simulation. The latter
approach can impose significant restrictions in both system performance and
representational consistency but often requires less effort than modifying (and potentially
re-validating) existing software. The DOD High Level Architecture (see Section 4.2.1)
was developed to support these types of integration and has been used successfully with
both of the approaches described above.

The more tightly coupled approaches to model integration are shown in Figure 4.4.2 as
different ways of integrating models with a modeling framework/simulation engine.
These include a Remote Method Invocation (RMI) wrapper around the model, a cross-
language wrapper for integration within a single software executable and re-
implementation of modelsin a new simulation.

3.4.1 Planning for Reuse

There is an overall connection among development of a system from a common
architecture (Section 3.1), adoption of domain models (Section 3.3.6) and reuse. There is
no way to turn back time and modify the original development of legacy models and so
they must be taken for what they are, however it is possible to facilitate reuse going
forward. The development of models and simulations in conformance with architectural
and data standards makes it far easier to reuse these pieces of software in future analyses
or systems. The investment involved in developing domain models and in designing
simulations so that they can be federated is rapidly recouped in reductions in
development effort for subsequent similar systems.

4 Technology Reviews

This section provides an overview and evaluation of each technology surveyed as part of
this study. Each technology is also mapped into components of the reference architecture.
The various candidate technologies are grouped by sub-section according to its primary
role in the architecture. The results of this section are summarized in Figure 4.1.

ATM Modeling and Simulation Architecture Study Page 18

Architectural Applicability to
Technology Mapping Use Cases* Comments HLA
Modeling Framework FTCT: Applicable but overkill | Powerful multi-processing simulation
SPEEDES Simulation Engine FTDE: Applicable engine, but reaping the benefits of Yes
Communications RT: Not Applicable parallelism takes effort
Modeling Framework FTCT: Possibly Applicable Sim engine from artificial life
SWARM Simulation Engine FTDE: Not Applicable community. Insufficient scalability, No
RT: Not Applicable power for NAS applications. Agent
modeling paradigm is a plus.
Modeling Framework FTCT: Applicable NAS domain simulation engine.
RFS Simulation Engine FTDE: Applicable, possible | Extensible model collection. Lack of | Yes
C ol A performance limitations releasable, “shrink wrap” version
ommunications (via) RT: Applicable
Simulation .
Execution Domain FTCT: Applicable Mature processes, tools and software
HLA Management | “GAgsd FTDE: Applicable for integrating/composing Yes
| Communications (RTI) | RT: Applicable independent simulations.
(OMON
BE‘} Modelig Framework . FTCT: Concept Applicable Wide-ranging set of architectures for
- { T FTDE: Applicable full lifecycle of simulation, from
AIRMM o e wsynanina[T | RT: Applicable knowledge management through Yes
il L ooy simulation execution and analysis
FoaleL_ Integration/Communications 4
,
-?:; FTCT: Concept Applicable Good conceptual architecture for
= 4 e FTDE: Not Applicable FTCT and analytical simulation No
ASAC “ a P RT: Not Applicable execution management.
Eul \
*FTCT = Fast-time Conceptual Trades, FTDE = Fast-time Detailed Evaluation, RT = Real-time
Figure 4.1 Technology Capability Matrix (Page 1 of 2)

ATM Modeling and Simulation Architecture Study

Page 19

Architectural

Applicability to

*FTCT = Fast-time Conceptual Trades, FTDE = Fast-time Detailed Evaluation, RT = Real-time

Figure 4.1 Technology Capability Matrix (Page 2 of 2)

Technology Mapping Use Cases* Comments HLA
Modeling Framework FTCT: Applicable Simulation environment for multi-
TRANSIMS Simulation Engine FTDE: Applicable modal ground transportation No
— RT: Not Applicable problems. Composable. Parallel
Communications simulation engine.
Modeling Framework FTCT: Not Applicable Simulation engine for ground portion
DESIREE Simulation Engine FTDE: Not Applicable of air-traffic control systems. Focus No
RT: Applicable on human factors.
. FTCT: Applicable Domain modeling effort for
NIAC Domain FTDE: Applicable development of ATM systems. Some | N/A
Models RT: Applicable reuse for NAS simulation
development (e.g., HLA FOMs)
) Modeling Framework FTCT: Not Applicable COTS Simulation engines.
Osim, Stage, Simulation Engine FTDE: Not Applicable Specialized to real-time, except for Osim,
VR-Link Communications RT: Applicable VR-Link. ¥eR;L|nk:

ATM Modeling and Simulation Architecture Study

Page 20

SAIC

4.1 Simulation/Modeling Engines

4.1.1 Synchronous Parallel Environment for Emulation and
Discrete Event Simulation (SPEEDES)

4.1.1.1 Architectural Category

The Synchronous Parallel Environment for Emulation and Discrete Event Simulation
(SPEEDES) is a general-purpose discrete event distributed simulation engine and
modeling framework, focused on scalability through parallel execution.

Architectural Elements: Modeling Framework, Simulation Engine (parallel discrete
event), Communications (multi-processor and HLA).

4.1.1.2 Characteristics

Synchronous Parallel Environment for Emulation and Discrete Event Simulation

(SPEEDES)
History Developed by JPL 1990-1995, Metron since 1996

User Community Joint Simulation System (JSIMS), Wargame 2000, Joint National Test Facility
(JNTF), Naval Simulation System (NSS), Extended Air Defense Test Bed
(EADTB). These efforts involve numerous organizations including: TRW,
SAIC, Raytheon, Hughes Aircraft, MITRE, Sparta, Logicon, OriginalSim,
System Integration Software (SIS), EcoSoftware, Jet Propulsion Laboratory
(JPL), Los Alamos National Laboratory (LANL), Dartmouth College,
University of Virginia, and others.

Cost Free to NASA

Community Web Sites www.speedes.org, www.speedes.com

Documentation Extensive user manual, API reference and examples, books, papers
Software C++, available on Unix and Windows NT. Integrated with HLA

Sources of information: [St1999], [SP2000], [Hi2001], Conversations with Dr. Edward Powell, former
JSIMS simulation architect.

4.1.1.3 Summary

SPEEDES is a discrete event simulation engine and modeling framework. Development
of SPEEDES has emphasized distributed processing, focusing on integration of objects
distributed across large numbers of processors. One of the key features of SPEEDES is
its ability to preserve causally correct event processing in a parallel processing
environment.

SPEEDES is first and foremost a discrete event simulation engine. SPEEDES runs
discrete event simulations in parallel by distributing the simulation objects to different
processors. Each processor is then responsible for executing all events on the simulation
objects that it was assigned, though any event may affect objects on other processors.

The SPEEDES architecture, shown in Figure 4.1.1.1 provides communications, event,
and time management, and a modeling framework. The SPEEDES modeling framework,
shown in Figure 4.1.1.2 provides the basic functions needed for event-based simulation —
objects, various types of events, event messages and event handling. SPEEDES provides

ATM Modeling and Simulation Architecture Study Page 21

Models

Modeling
Framework
; : ; Seguential Eixed Breathing Breathing
Simulation Engine %ime Time Triime Time
(optimistic scheduling Managemeng Buckets BUckets Warp

multiprocessor
coordination) . SPEEDES Event-lVlanagement Services
(Event List Management; StaterSavingl Rollbacks, Message Hand

Communications SPEEDES Host User Communications
Eramework Communications LLibrary InterfacerforExternal Modules

Figure 4.1.1.1: SPEEDES Architecture

functions specific to optimistic parallel simulation including checkpoint, rollbacks and
memory management as well as tools for optimizing the allocation of simulation object
processing across multiple processors. SPEEDES also provides some diagnostic tools
including event tracing and event usage statistics.

SPEEDES provides HLA interoperability in several ways. First, SPEEDES is an HLA
client, allowing SPEEDES-based simulations to interoperate with other HLA simulations
via standard RTI mechanisms. Second, SPEEDES has implemented the HLA RTI
interface so that the SPEEDES kernel itself can serve as an RTI. Under this scheme,
multiple SPEEDES and/or non-SPEEDES federates operating on high-performance
computing platforms
can interoperate via the
standard RTI interface,
with RTI
communications being
implemented using
high-speed shared
memory mechanisms.
Third, SPEEDES can
serve as a gateway

Siimo)

Application Application Application Application aIIowing remote
SIimObjMgr SimObj Event Message federates to interoperate
with SPEEDES-based
Figure 4.1.1.2: SPEEDES Modeling Framework SlmU|at|_0n3 without
employing separate RTI
software.

4.1.1.4 Evaluation

It should be noted that parallel discrete event simulation (PDES) is a specialized art and
that employment of a PDES engine does not guarantee improved performance. A 1993

ATM Modeling and Simulation Architecture Study Page 22

article by Professor Richard Fujimoto, himself a PDES practitioner, questioned whether
the PDES field would survive, given the difficulty of applying parallel simulation
techniques. [Ful993] A recent Air Force prototyping experiment actually showed a
decrease in performance under SPEEDES as the size of the parallel cluster increased
[Hi2001]. Such caveats notwithstanding, parallel computing remains a practical way to
tackle many classes of large simulation problems. Fujimoto’s article concludes that the
field will survive for this reason, and the Air Force project chose to continue with parallel
simulation despite initially disappointing results.

SPEEDES is a mature simulation engine that has been used in a number of large projects
across a variety of hardware architectures ranging from massively parallel machines to
distributed networks of fast workstations. It could be a good choice as a framework for
NAS simulations, subject only to caveats about the complexity of programming for and
optimizing the execution of PDES.

Applicability to Use Cases:
o Fast-time Conceptual Trades — Applicable but probably overkill
o Fast-time Detailed Evaluation — Applicable
0 Real-time Virtual Simulations — Not Applicable

4.1.2 Agent-Based Simulation/SWARM

4.1.2.1 Architectural Category

Swarm is a simulation engine and modeling framework focusing on an agent-based
simulation paradigm. The product’s origins are in the field of Artificial life, an approach
to studying biological systems focusing on discovery of macro level mechanisms and
patterns by observing the collective interactions of micro-level models.

Architectural Elements: Modeling Framework, Simulation Engine

4.1.2.2 Characteristics

SWARM

History Developed at Sante Fe Institute starting in 1994

User Community User Community: Primarily academia, with projects in biology, ecology,
economics, political science, computer science, anthropology, geography and
defense (see http://www.swarm.org/community-links.html)

Cost Free under Gnu licensing terms

Community Web Sites Swarm development group (swarm.org), swarm.com

Documentation User manual, API reference and examples, books, papers

Software Obijective C, with interfaces to Java, Scheme, XML. Available for Windows
and Unix. Supporting graphics, data collection libraries

Sources of information: [Dal1999], [SD2000]

4.1.2.3 Summary

Swarm is an agent simulation framework originally inspired by artificial life concepts.
Thus, its modeling paradigm focuses on applications with large numbers of interacting

ATM Modeling and Simulation Architecture Study Page 23

SAIC

entities, or agents. Agents within Swarm can be organized hierarchically into collections
called swarms.

Built-in 2D discrete grid space, The Swarm engine offers a
} genetic algorithm, neural network fa|r|y basic set of Capabi"ties_
librari . . .
Models oraries Like most simulation
. Swarmobject, swarm libraries frameworks, it offers time and
IFETIEIL event management. Each
Simulation Engine * Activity library: Scheduling, Swarm agent maintains one or
event/time management .
o) more schedules, or lists of
« Utilities: 2D Graphics, data . Each . P ff
collection (probes), statistical actions. Each action Is In efrect
summaries, random numbers an event which triggers a
Integration/ . d
Communications N method call, invoking some
Framework one

pre-defined behavior of the
Figure 4.1.2.1: SWARM libraries mapped to the reference agent. Actions can be invoked
architecture based on time (from a
schedule) or based on
interactions with other agents. Swarm is a fast-time time-stepped model with a variable
time step. The Swarm engine does not contain any features for distributed computing.

Swarm contains several features to support model development, observation and analysis.
The first is the Observer swarm, which is typically a parent of the other swarms in a
simulation. Observer objects can input data into model swarms (setting simulation
parameters, for instance) and read data out of the model swarm (collecting statistics of
the behavior of agents). Just as with model swarms, an observer swarm has a collection
of objects (the instrumentation), a schedule of activity, and a set of inputs and outputs.
The activity of the observer schedule is to drive data collection — e.g., read a number out
of the model, draw it on a graph. The inputs to the observer swarm are configurations of
the observer tools: what sorts of graphs to generate, for instance. The outputs are the
observations.

Swarm also contains a representation of physical space with a rectangular coordinate
system, data probes for connection of model swarms to observer swarms, random number
generation and a 2D graphics library.

4.1.2.4 Evaluation

Swarm was created as a simple way for non-programmer scientists to create virtual
experiments — to in effect create a petri dish on the computer. As such it is long on
simplicity of interface (the 1,200 line “simple” heatbugs example application aside) and
short on fancy computational characteristics. Swarm’s native language is Objective C,
though it can run models written in Java and Scheme with declarations in XML. The
Swarm community is primarily centered in academia.

Swarm presents a novel set of tools for looking at an interesting class of problems,
however its lack of scalability features, absence of features for integration with other
simulations, somewhat limited language support and lack of proven industrial-scale use
lead to a recommendation that it not be considered as a primary simulation engine for
NAS simulations.

ATM Modeling and Simulation Architecture Study Page 24

Applicability to Use Cases:
0 Fast-time Conceptual Trades — Possibly Applicable
o Fast-time Detailed Evaluation — Not Applicable
o Real-time Virtual Simulations — Not Applicable

4.1.3 Georgia Tech Reconfigurable Flight Simulator (RFS)

4.1.3.1 Architectural Category

The Georgia Tech Reconfigurable Flight Simulator is described in the literature as a
simulation engine and modeling framework, focused on the particular needs of the
analysis and design communities. The modeling framework uses an object-oriented
paradigm for representation of simulation objects. RFS has also been used as a
framework for a gateway to interconnect multiple simulations.

Architectural Elements: Modeling Framework, Simulation, Communications (via HLA
RTI).

4.1.3.2 Characteristics

Georgia Tech Reconfigurable Flight Simulator (RFS)
History Developed at Georgia Tech over the last several years, funded by NASA.
User Community Small, primarily GA Tech, NASA Langley
Cost Free to NASA
Community Web Sites None
Documentation Several papers. Status of programmer documentation is unknown.
Software C++, with OpenGL graphics. Integrated with HLA.
Sources of information: [1p2000], [Pr2000],[Pr2001], conversation with Dr. Amy Pritchett of Georgia
Tech
Simulator Object ‘ Scenario ‘
‘ Network Interface ‘
Simulation
Controller I/O Objects ‘ Interpreter ‘
Controller
1/O Object ‘ Timer ‘
Controller
1/0 Object
Controller
1/0 Object
/‘ / Vehicle List
Vehicle
Objects that manipulate ECAD
the simulation (e.g., .
ATC, random Atmospliere Vehicle
generation of aircraft,
discrete evetns such as .
mechanical failures) = Vehicle
| Nav aids
Input/outputs, e.g., }J
hardware interfaces,
data storage, pilot inuts, All vehicles in the
avionics displays simulation ‘
Fiaure 4.1.3.1: Georaia Tech Reconfiaurable Fliaht Simulator Architecture

4.1.3.3 Summary

The Reconfigurable Flight Simulator was designed to meet the requirements of a
simulator useful for aerospace research and design activities. The goal of the system is to
provide a generic framework within which aerospace researchers can combine models to
create simulations.

The RFS has the goal of satisfying a defined set of simulation requirements, including:

o Flexibility: the simulation should not be fundamentally constrained to a specific
set of models, mode of operation or fidelity level

0 Accessibility: The simulation should be accessible to the general user, that is, a
technical user who is not a simulation specialist

0 Robustness: The simulation should support modification without introduction of
unpredictable side effects due to complex model inter-dependencies

o Extensibility: Addition of new components should be possible without
fundamental changes to the system architecture

To satisfy these requirements the RFS has developed a simulation engine with a single
processor kernel and an object-oriented modeling framework. The engine consists of a set
of core simulator objects that handle object creation/destruction and list management,
time management, coordinates and environment. These objects are augmented by a
domain-specific modeling framework, as shown in Figure 4.1.3.1.

The RFS modeling framework contains three major categories of objects: first, there are
vehicles, which include moving elements of the simulation including aircraft and ground
vehicles. Second, there is an explicit base class for linking in Input/Output (1/0) objects
such as hardware interfaces, data storage components, pilot interfaces and avionics
displays. Third, there is a Controller/Measurement category to represent objects that
manipulate, control or measure aspects of the simulation. Examples of this latter category
include ATC controllers, random aircraft generation and discrete events such as
mechanical failures.

The RFS engine has some unique features for supporting visibility into analyses. In
particular, the Object Data/Method Extensions (OD/ME) capability allows models to
declare and invoke interfaces at run-time. This capability allows flexibility in model
integration and in integration with external software controllers (including command line
control providing analysts with an ad hoc interface to simulations at run-time). The
disadvantage of this interface is that all OD/ME calls run through an interpreter and so
are considerably slower than native function calls.

RFS has been used in both fast-time and real-time applications. In real-time mode thee
framework has also been used to tie together event-driven models and time-stepped
human factors models (in particular, MIDAS), creating a hybrid representational
paradigm.

ATM Modeling and Simulation Architecture Study Page 26

4.1.3.4 Evaluation

RFS was somewhat hard to evaluate, given the small amount of published information
available. This speaks to its newness on the scene and lack of packaging as a “shrink-
wrap” tool as well as the small size of its user community.

The framework appears to be useful for small to medium size simulations, both for real-
time and fast-time applications. Its lack of multi-processor capabilities and interpreted
model interface language may point to limitations in potential scalability. On the other
hand, its implementation of HLA for both external communications and integration of
multiple RFS instances (including distribution of the OD/ME protocol via HLA) does
provide an opportunity for scale and integration. The flexible software interface strategy
of RFS could make it a good candidate for quick turn-around simulations and for
interconnection with virtual simulators.

Applicability to Use Cases:
o Fast-time Conceptual Trades — Applicable
0 Fast-time Detailed Evaluation — Applicable, possibly with performance
limitations.
o Real-time Virtual Simulations — Applicable

4.1.4 TRANSIMS

This software was not among those specifically called out by NASA and so only a brief
survey is presented.

Architectural Elements: Modeling Framework, Simulation Engine (parallel),
Communications (multi-processor).

Transportation Analysis and Simulation System (TRANSIMS) is an integrated system of
travel forecasting models designed to give transportation planners information on traffic
impacts, congestion, and pollution. TRANSIMS models create a virtual metropolitan
region with a complete representation of the region's individuals, their activities, and the
transportation infrastructure. TRANSIMS was originally developed for the Department of
Transportation at Los Alamos National Laboratory. As of October of 2000, development
of a releasable version transitioned to an outside contractor. [TR2000]

TRANSIMS is primarily a node and link model of multi-modal ground transportation,
however it provides some simulation engine features and simulation support tools that are
of more general interest. First, while TRANSIMS is not designed to interoperate with
other simulations it can itself be distributed in a cluster-computing environment
(specifically a “Rockhopper” cluster).

Second, TRANSIMS has created an environment where different simulation modules, for
example, of population generation, route planning, traffic simulation and tailpipe
emissions calculation, can be chained together in flexible ways for varying studies. This
mirrors the ASAC concept of dynamic assembly of models based on open APIs.

Third, like ASAC, TRANSIMS has sets of simulation control and data manipulation tools
for performing multiple iteration of runs for a study or experiment, and for filtering

ATM Modeling and Simulation Architecture Study Page 27

SAIC

sorting, indexing cataloging output data as well as “noising” (introducing stochastic
variation) input data files.

TRANSIMS services a different domain than NAS simulation. Some of the problems are
similar, however some are quite different (for example, individual travelers’ choices in
mode of surface travel — be it car, bus, or carpool — do not come into play in the ATM
domain). TRANSIMS also suffers from being a closed system — it does not integrate with
other simulations. However, given the level of investment (> $25M, per the TRANSIMS
web site), project scalability features (current focus is on a scenario with 120,000 links
and 1.5 million travelers -- an order of magnitude larger than the achieved Dallas/Fort
Worth simulation of 10,000 links and 200,000 travelers) it may be worth investigating as
a simulation engine. [TR2001][TR2001b] Availability to NASA is unknown.

4.1.5 DESIREE

This software was not among those specifically called out by NASA and so only a brief
survey is presented.

Architectural Elements: Modeling Framework, Simulation Engine.

The Distributed Environment for Simulation, Rapid Engineering and Experimentation
(DESIREE) was developed by the FAA William Hughes Technical Center R&D Human
Factors Laboratory. DESIREE is a simulation engine designed as a tool for building
simulations of the ground portion of Air-Traffic Control systems. The focal point of
DESIREE lies in user interface simulation and so its modeling framework is designed for
rapid reconfigurability of user interface elements. Models connect into the DESIREE
infrastructure via a publish/subscribe mechanism. This concept, which mirrors both
common notions of User Interface callbacks, allows model-level components to be
independently developed and fairly simply interconnected at run-time.

DESIREE includes tools which support its application goals, included integrated Q&A (a
facility for interrupting the simulation and asking the user a question), event scripting and
data collection/analysis tools.

DESIREE is a stand-alone real-time framework developed for human factors analysis,
and as such is not an optimal candidate as a generic simulation framework for NAS
simulation. It does, however, include some concepts that could be useful in developing
generic, rapidly reconfigurable simulations and model libraries.

4.1.6 COTS Frameworks

This software was not among those specifically called out by NASA and so only a brief
survey is presented.

Architectural Elements: Modeling Framework, Simulation Engine, Communications
(HLA for VR-Link).

In addition to review of relevant government efforts, the study also included a look at the
state of Commercial Off the Shelf (COTS) simulation engines. A survey of the Defense
Modeling and Simulation Office web site, www.dmso.mil, led to three representative
frameworks: OSim, from OriginalSim [0S1998][0S1998b], STAGE, from Virtual

ATM Modeling and Simulation Architecture Study Page 28

SAIC

Prototypes, Inc. [Be1997] and VR-Link, from MaK Technologies. Evaluation of these
tools is useful in that it provides a perspective into both the requirements for and the tools
available for creating a NASwide simulation environment. Because of the focus within
this study on architecture rather than tools, COTS simulation libraries such as Simscript
were not included in the survey.

All three of the tools evaluated were focused on real-time applications. OSim takes a
somewhat architecture-driven approach to simulation. The product includes a simulation
engine with defined interfaces for integrating models. The product includes some tools
for managing libraries of models. It also includes tools for both data visualization and
2D/3D view creation. Osim includes HLA integration.

STAGE is a real-time simulation engine designed for training environments. Simulated
entities can be scripted in STAGE’s own scripting language. The product has defined
APIs that allow users to insert additional models into the system. The tool provides
interoperability through the older Defense DIS protocol, but not via HLA.

VR-Link is a venerable simulation toolkit from the DIS/HLA world. It is in a sense the
most barebones of the three, offering only some basic simulation engine and network
tools, consisting in part of wrappers around the HLA RTI. VR-Link also integrates with
other MaK products which provide viewing and data collection via HLA.

4.2 Simulation Interoperability/Integration
4.2.1 DOD High Level Architecture (HLA)

4.2.1.1 Architectural Category

The Department of Defense (DOD) High Level Architecture (HLA) is a set of processes,
specifications, tools and software designed to facilitate integration and management of
independently developed simulation applications. The HLA Runtime Infrastructure (RTI)
Is a communications framework that allows simulation engines to coordinate and
synchronize their time, event and communications management functions.

Architectural Elements: Simulation Execution Management, Domain Modeling,
Communications.

4.2.1.2 Characteristics
High Level Architecture (HLA)

History Developed by DOD starting in 1995 based on earlier distributed simulation
experience

User Community Large DOD User base. Sponsored by Defense Modeling and Simulation Office
(DMSO0).

Cost Free to NASA

Community Web Sites hla.dmso.mil, www.sisostds.org

Documentation API reference and examples, books, papers

Software C++, available on multiple platforms with interfaces to multiple languages
(CORBA IDL, Ada95, Java).

ATM Modeling and Simulation Architecture Study Page 29

SAIC

| Sources of information: | [DM1998][DM1999]

4.2.1.3 Summary
DOD M&S Integration Experience

The DOD Modeling and Simulation (M&S) community has in the past ten years focused
a great deal of attention and resources on the problem of integrating heterogeneous
models and simulations. The DOD simulation community was at one time oriented
almost entirely to producing stovepipe solutions to M&S problems. Numerous
incompatible simulations existed within the DOD domain. Meanwhile, the DOD was
facing increasingly demanding operational requirements, including more complex
missions in a vastly expanded mission space; increased complexity of missions, plans,
and systems; and a much more restrained fiscal environment. Advanced M&S capability
was believed to hold a key to more cost effective analysis, design, operational planning,
doctrine development, and training. An intellectual consensus for interoperability
consequently developed in the early 1990s, and “opening up” and linking existing
simulations became the primary technical challenge of the DOD M&S community.

Various integration mechanisms were proposed and implemented. First, a centralized
server-based integration approach was constructed in the Aggregate-Level Simulation
Protocol (ALSP) program, with significant functionality, but little generality, openness,
and scalability. A peer-to-peer message-passing architecture called Distributed
Interactive Simulation (DIS) was created, in which standard message types and protocols
were agreed to by a large fraction of the DOD M&S community. DIS was achieved
widespread acceptance but suffered from lack of flexibility in defining messages as well
as scalability and performance problems. In 1994, leaders in the DOD simulation
community sponsored the Advanced Distributed Simulation Architecture Study to
address the general needs of the DOD M&S community and build upon the strengths of
ALSP and DIS. This study resulted in the definition of the DOD High Level Architecture

o (HLA) for
D D NS Modeling and
— S Live/Simulator Simulation in
[iicsicon i ot Participants 1995, and its
subsequent

standardization in
1999. Today, the
majority of DOD
simulations are
HLA-compliant
or are moving in

Support Interfaces to
Utilities Live Players

! s |f

Runtime Infrastructure (RTI)

Federation Management
Object Management
Time Management

Declaration Management
Ownership Management
Data Distribution Management

Figure 4.2.1.1: High Level Architecture Runtime Infrastructure

that direction.

HLA Elements
and Terminology

The HLA
provides a
blueprint for
integration of

ATM Modeling and Simulation Architecture Study

Page 30

SAIC

existing simulations and provides guidelines for how to create future simulations with
interoperability in mind. The HLA specifies a set of rules, an interface specification to a
communications infrastructure called the Run-Time Infrastructure (RTI), and a format
called the Object Model Template (OMT) for use in defining message types for
information interchange. The RTI provides the key set of services required of a
distributed simulation system. Figure 4.2.1.1 shows how the RTI connects simulations

A set of simulations (previously referred to in this report as a “simulation system”),
integrated using an HLA RTI and a specific object model, is called a “federation,” with
the specific object model being used in a given federation called the “federation object
model” (FOM). Each simulation within the federation is referred to as a “federate”.

Besides its core architectural elements, the HLA also provides auxiliary information,

including:

o A standard process for integrating simulations called the Federation Development
and Execution Process (FEDEP),

0 An available set of COTS and GOTS tools for common setup, monitoring, data
collection and analysis functions,

o A standard representation of weather and other aspects of the environment called
the Synthetic Environment Data Representation and Interchange Specification
(SEDRIS),

o A GOTS implementation of the RTI, that operates on a wide range of hardware
platforms and operating systems, including virtually all commonly used PC and
UNIX systems.

o Guidance on how to use the RTI in demanding, high performance applications.

Federation Development and Execution Process (FEDEP)

The FEDERP is a high level process which facilitates integration of independent
simulations and fosters reuse at the simulation level by creating a composable simulation
environment wherein independent simulation modules can be combined as needed based

Step 1 #>

Step 2 #>

Step 3 F>

Step 4 F>

Step 5 F>

Step 6 #>

Define
Federation
Objectives

Define
Scenario
Concept

Identify
Needs

Develop
Analysis
Objectives

Develop
Federation
Conceptual

Model

Develop
Scenario(s)

Perform
Conceptual
Analysis

Develop
Simulation
Requirements

Design
Federation

Select
Models/
simulations

Allocate
Functionality to
Federates

Prepare
Simulation and
Analysis Plan

Develop
Federation

Develop and
Document
FOM

Modify or
enhance
federates,
models as
required

Integrate
And
Test

Federation

Plan
Execution of
simulation run(s)

Integrate
Federation

Test
Federation

Execute
Federation
And
Analyze
Results

Execute
Simulation
Run(s)

Process
Output

Prepare
Results

on user needs.

The first part of the FEDEP process is to understand the analysis objectives that the
federation will support. A federation may be put together for a single exercise or analysis
or it may persist over time. The top-level conceptual model of the federation is used as a
roadmap for actually instantiating the federation.

The second step in the FEDEP process is to perform detailed design of the federation by
selecting the models or simulations that will be included and deciding what functionality
each model and simulation support/management tool brings for the federation. In many
cases, there may be an overlap in functionality between federates; however, the designers
of a federation specify which federates provide which functionality for the federation.

The most important part of the process of establishing interoperability between the
various simulations is the development and documentation of the Federation Object
Model used for that federation. The FOM includes a detailed description of all of the
information exchanged in distributed federation and needs to take into account the
capabilities of the various members of the federation. Sometimes, when domain
representations used in different simulations are similar, the FOM development process is
straightforward. Other times, when legacy simulations are used and representations are
very dissimilar, a more extensive process of negotiation, translation, and alteration is
required.

Figure 4.2.1.2 shows the FEDEP.

The HLA also defines several other related object models. The Simulation Object Model
(or SOM), defines all the objects, attributes and interactions that a particular simulation is
capable of using externally (not all of which may be used in a particular FOM). The
Management Object Model (MOM) identifies a set of objects and interactions used to
manage a federation.

Runtime Infrastructure (RTI)

The RTI software provides a set of services used by federates to coordinate their
operations and exchange data during run-time execution. Access to RTI services is
defined by the HLA Interface Specification, and all data exchanged through the RTI is
defined by the Federation’s FOM and the MOM. HLA RTI services are summarized in
the RTI box in Figure 4.2.1.1.

At run-time each federate may publish and subscribe to information (“objects” and
“interactions” in HLA parlance) based on the total set of distributed information
described in the FOM. The RTI handles distribution of information from publishers to
subscribers. The RTI contains several optimization schemes that ensure that each
simulation gets only that information to which it subscribes, supporting scalability by
reducing network and processor loading needed to filter extraneous data.

The RTI also contains mechanisms for coordinating time across simulations, from loose
time coordination useful for real-time training to tightly synchronized, guaranteed event
order mechanisms appropriate for analytical simulation.

ATM Modeling and Simulation Architecture Study Page 32

Last, the RTI provides functions, which support coordination of a distributed simulation

execution, including distributed start/stop, pause/resume and checkpoint/restart
commands.

4.2.1.4 Evaluation

HLA has successfully linked hundred of simulations supporting thousands of entities and
highly dynamic weather, terrain and command and control messaging. It is the leading
technology in simulation application integration and so is a strong contender as the glue
that holds together multiple simulations in the NAS domain.

In addition, the large DOD user base has fostered creation of a fairly large set of COTS
and GOTS HLA products, including FOM development, data collection and exercise
control tools. The continued funding of HLA development and of HLA-based programs
within the DOD means that this set of tools will continue to grow in number and
capability for the foreseeable future.

That having been said, large-scale application of HLA has to date been mostly in the real-
time world. This is not due to a bias in HLA capabilities in that direction; rather, it
reflects the operational and funding priorities of the DOD. What is does mean is that the
RTI implementations have not for the most part been stress-tested in large fast-time
applications and that the RTI’s defined capabilities are relatively immature in some areas
of control for analytical simulations. The time and data management capabilities of the
RTI were developed by experts from the parallel discrete event simulation (PDES) world
and have the capabilities required for analytical simulation. The RTI offers less capability
where it comes to the sorts of distributed initialization and multiple run management
features that would be required for distributed Monte Carlo simulation. Existing analysis
federations have found ways to augment base RTI capabilities to satisfy their
requirements.

In all, despite the several blemishes described above, HLA remains the strongest
contender in the industry for simulation integration for all three Use Cases.

Applicability to Use Cases:
0 Fast-time Conceptual Trades — Applicable
o Fast-time Detailed Evaluation — Applicable
o Real-time Virtual Simulations — Applicable

4.3 Analysis Architectures
4.3.1 Aviation System Analysis Capability (ASAC)

4.3.1.1 Architectural Category

The Aviation System Analysis Capability (ASAC) is an integrated suite of models,
execution management tools and databases for Fast-time Conceptual Trades.

Architectural Elements: Domain Models, Initialization, Data Collection and Analysis,
Simulation Execution Management.

ATM Modeling and Simulation Architecture Study Page 33

4.3.1.2 Characteristics

Aviation System Analysis Capability (ASAC

History Developed starting in 1995 by LMI

User Community As of 1999, 264 registered users across 58 government, industry and academic
organizations

Cost Unknown

Community Web Sites www.asac.lmi.org

Documentation Extensive architecture and design documentation

Software Web-based versions of Executive Assistant (EA) and Quick Response System
(QRS) software

Sources of information: [R01999], [R01999b], [R01997]

4.3.1.3 Summary

The Aviation System Analysis Capability (ASAC) is an integrated suite of models,
execution management tools and databases that is designed to evaluate the impacts of
technology, policies, and procedures on the air transportation system. The system
contains a set of models representing different aspects of the NAS domain. The models
run independently but have compatible inputs and outputs and so can be chained together
for complex analyses. To support chaining together models ASAC contains a fixed set of
analysis templates. These are stereotypes of ways models can be combined for particular
analyses. Figure 4.3.1.1 shows an example of an analysis template.

ASAC, in addition to its models and data, contains a set of analyst support tools. The
primary analyst interface is the Executive Assistant (EA). The EA allows users to select
templates, populate the templates with models and then execute sets of runs. Figure
4.3.1.2 shows the components of the ASAC EA. The EA User Application provides the
user interface to the analyst. The Model and Application Service components handle the
details of selecting and executing models. The Analysis Application provides control
over an EA execution. The Analysis Application also allows automation in variation of
parameters for sensitivity analysis, optimization on a parameter value and backsolving
against a parameter.

The Quick Response System (QRS) provides a simpler interface to the models within

Analyze Improved Air Traffic Management

1.5 ASAC Flight .
2.1 ASAC Airport| |2.2 ASAC Airport| | Segment Cost . "alr.rZe'rAlsrf/gst?r:gn t
Capacity Model Delay Model Model — Cost e
Model
Translator

Inputs: Outputs:
« Change in runway occupancy time, and/or « Change in RPM flown
« Change in position uncertainty, and/or « Change in number of aircraft in

« Change in minimum separation, and/or fleet

« Change in approach speed uncertainty * Change in employment levels

Figure 4.3.1.1: Example ASAC Analysis Template

ATM Modeling and Simulation Architecture Study Page 34

ASAC. QRS allows a user to parameterize and run an individual model and generate

reports of model results. As its name suggests, the QRS is intended to provide a “quick
and dirty” way of running models without going through the complexity of the EA.

ASAC also includes additional components for document management and for linking to
external NASA sites and data.

ASAC Executive

Assistant (EA)
I I I |

. Analysis Application

User Application 1St Model pplics
Application Service

« User Interface * Templates * Model Catalog « Distributed Computing
* Analysis users « Execution * Model « Data Service

. Summary . .
« System Admin users « Model Data Element « Presentation (Graphics)

¢ Analysis

Configuration « Model Execution Options * Management

« Communications
Driver « Common Support
» Nominal
* Optimizer

« Backsolver
« Table Generator

Figure 4.3.1.2: ASAC Executive Assistant Architecture

4.3.1.4 Evaluation

ASAC is an analysis architecture rather than a run-time architecture and so technically
lies largely beyond the scope of this study. The system does not have a run-time
architecture per se, in that it is really an execution shell that runs models one at a time in
succession. The only run-time linkage is through common data definitions across the
various models. In addition, while the system design is thoroughly documented via a
domain-specific software architecture, it was not possible, given the lack of access to the
ASAC software, to determine the capabilities of the present version of the software. It is
not clear that the software is amenable to extension to incorporate interoperation with
other systems.

All that having been said, the ASAC paradigm is useful to consider as a straightforward
way of assembling and executing models for conceptual trades. The analysis architecture
should take into consideration support for functions such as those provided by the
Executive Assistant in the areas of multiple run management and rapid yet flexible
composition of models for conceptual analysis.

Applicability to Use Cases:
0 Fast-time Conceptual Trades — Applicable
o Fast-time Detailed Evaluation — Less Applicable

ATM Modeling and Simulation Architecture Study Page 35

o Real-time Virtual Simulations — Not Applicable

4.3.2 AIRMM

4.3.2.1 Architectural Category

AIRMM is an architectural concept incorporating a full lifecycle of modeling analysis.
The architecture is composed of a set of frameworks covering aspects of analytical tasks
ranging from knowledge management to simulation execution and analysis.

Architectural Elements: All reference architecture components.

4.3.2.2 Characteristics

AIRMM

History Developed at the FAA Tech Center based on requirements from the 1999
Aviation Modeling and Simulation Workshops

User Community N/A

Cost None

Community Web Sites None. Project web site is http://www.tc.faa.gov/act-
500/nasacb/airmm/airmm.html

Documentation Several papers and web site

Software Prototypes under development

Sources of information: Web site, [SC2000]

4.3.2.3 Summary

In 1999 a series of workshops, the Aviation Modeling and Simulation Workshops
(AMSW) were held to solicit input from the aviation community regarding requirements

* NAS Architecture

Web Access
, Domain Experts
 Aviation Business &
Logic :.'
O

* Domain Conceptual :" o Component Bus
Model o Aviation Knowledge Management
P System (AKMS) —
* Data Standards K ,
Syst Vend - Knowledge e
* System Vendors > eb Servers
v Reasoning Systems Knowledge Bases N
K P P - Formation
K Kol V4 y4 -

:." |Agent Support Infrastructure ﬂ‘ .,"

Aviation
Concept
“ K - Reusable
Free®, K 5 Components
Flight) K o Knowledge, K
k% K - Modtﬂ/ B%havior, & K [/ Other Agent Based Systems
se Case s
o ~»| Model / Tool
S Frameworks S Development ’
:.
______ Data Warehouses
K Concept - FDR, XML
.',:_ » Validation| 4 ;
I.: --- i' operational
Data Store
. - CORBA
AIRMM Enterprise Services] Live
,.'_’ ______ > Management and The ' CORBA Component Bus Systems
N DoD Tech. Framework Y
{ ‘o .

H H RTI Models of Federation Data Agent Translation| 1 Gateas
E;(n;g:l?ré?ln Services |)|Various Fidelity| /|M Collection Port Services o
Environment I I I I I

Multiple Communication Techniques “RTI, Web, CORBA” U
AIRMM Enterprise Software Repositories
Elf:,?xl:':ge?‘t Frameworks Management and The and Tgols
DoD Tech. Framework

for an improved aviation system level Air Traffic Management (ATM) modeling
capability. The workshops identified a need for a flexible, integrated modeling capability
to address issues and concepts from a top-down policy level to a detailed NAS

architecture level. AIRMM was developed with the goal of satisfying this modeling and
simulation need.

The AIRMM architecture is based on creating collections of systems, methodologies,
standards, and tools. These components are envisioned as being organized into a set of
frameworks which together compose AIRMM. The main AIRMM frameworks include:

The Knowledge Formulation and Analysis Environment,
o Extendable frameworks for knowledge, model/behavior, and use cases,

Run-time framework based on DOD's Technical Framework for Modeling and
Simulation, and

0 Repositories for software components and tools.

The complete set of AIRMM frameworks is shown in Figure 4.3.2.1. Of these, the run-
time framework is most germane to the present study.

The AIRMM run-time framework is based on the DOD High Level Architecture,

Surface Enroute/
Visual Oceanic
Visual

Knowledge/
Reasoning
Systems

Knowledge
Discovery /
Data Mining

AIRMM
Enterprise Manager

NAS
Services
Models

AIRMM AIRMM AIRMM
Interface Interface Interface Visualization Interface

I I I Services

Data
Collector
&
Data Base,

Federation
Manager

©

AIRMM
Interface

Multiple Communication Techniques “RTI, Web, CORBA” |

AIRMM AIRMM AIRMM AIRMM | . q
Interface Interface Translation Translation Translation
7 Services Services Services

Real
: Time Research
Asssg ,(.:\',{a;,ed Federate Tool

Figure 4.3.2.2: AIRMM Execution Environment

previously in Section 5.2. As shown in Figure 4.3.2.2, the AIRMM run-time is an HLA
federation with communications extensions including CORBA and Web protocols.
AIRMM creates a combined interface that unifies the HLA RTI, object persistence, an
agent-based simulation platform and other elements.

The AIRMM federation includes individual federates for various NAS elements such as
Air Operations Centers (AOC) as well as elements which surround the NAS, such as

ATM Modeling and Simulation Architecture Study Page 37

weather and surveillance. The AIRMM federation also includes typical HLA modules for
run-time control, visualization and data collection, as well as “feedback optimization”
functions to perform optimization over multiple runs a la the ASAC Executive Assistant.

The architecture also calls out a Human Performance Model separate from the other
models and simulations.

AIRMM run-time components incorporate several COTS/GOTS technologies. In
addition to HLA, simulations in AIRMM are built upon a Java agent tool kit called
JATLite and use the KQML knowledge representation language. Environmental elements
are represented based on the DOD Synthetic Environment Data Representation
Interchange Standard (SEDRIS) and command and control messaging uses the DOD
Command and Control Simulation Interchange Language (CCSIL).

The other AIRMM frameworks deal with other elements of the simulation/analysis
lifecycle. The Knowledge Formulation and Analysis Environment supports efficient
formulation, capturing, and abstraction of aviation knowledge so that it is readily
available to simulation developers and analysts. The Knowledge, Model/Behavior and
Use Case frameworks have the goal of reducing the effort involved in structuring and
management of aviation knowledge .The knowledge framework organized knowledge
relative to the aviation domain and the analytical model base. The model/behavior
framework provides a formalized mapping of aviation domain behaviors to an existing
model base. and is used to capture behavior of the modeling components. The Use Case
framework provides a standardized representation of modeling scenarios or use cases for
modeling the aviation domain, with support for capturing standardized scenarios to verify
and validate new modeling behavior.

Last, repositories provide a toolkit environment, allowing researchers to retrieve models,
simulations and data based on descriptions expressed in terms of the Model/Behavior
frameworks.

4.3.2.4 Evaluation

AIRMM is a far-reaching attempt to create a system for managing the tools, data and
processes involved in the full simulation lifecycle. It mirrors and builds upon work done
within the DOD, most notably the Joint Simulation System (JSIMS). It should be noted
that JSIMS has expanded well beyond its original budget and schedule; implementation
of the full AIRMM vision could be a similarly large undertaking.

The run-time component of AIRMM is, as previously mentioned, consistent with proven
DOD technologies and is largely consistent with the architecture proposed in this study.
There is in some of the AIRMM documentation a blurring between architecture and
implementation, with, for example, a specific language (Java) specified for
implementation of federation management software, specific allocation of domain
elements (en route controllers, etc.) to particular simulations and universal adoption of
somewhat heavyweight agent-oriented programming tools.

As a whole AIRMM is beyond the run-time orientation of this study and provides a large
vision of NAS modeling and simulation. Within its run-time framework, it builds upon a
proven foundation.

ATM Modeling and Simulation Architecture Study Page 38

Applicability to Use Cases:
0 Fast-time Conceptual Trades — Applicable
o Fast-time Detailed Evaluation — Applicable
o Real-time Virtual Simulations — Applicable

4.4 Domain Modeling
The following are some domain modeling efforts that relate to the NAS domain.

4.4.1 FAA NIAC

The FAA's NAS Information Architecture Committee (NIAC) coordinates the
establishment and future maintenance of information-based processes and procedures.
NIAC has the goal of enabling interoperability of systems across the National Airspace
System (NAS) via data standardization and data exchange. While the NIAC is geared
towards actual systems rather than simulations, it can provide a foundation for
development of domain models for the NAS simulation domain. [N12001]

4.4.2 DOD Conceptual Model of the Mission Space

The Defense Modeling and Simulation Office’s Conceptual Model of the Mission Space
(CMMS) project represents the DOD’s efforts in developing and documenting its domain
models. Conceptual Models of the Mission Space are simulation implementation-
independent functional descriptions of the real world processes, entities, and environment
associated with a particular set of missions. In particular, CMMS is: 1.) A disciplined
procedure by which the simulation developer is systematically informed about the real
world problem to be synthesized. 2.) A set of information standards the simulation
subject matter expert employs to communicate with and obtains feedback from the
military operations subject matter expert. 3.) The real world, military operations basis for
subsequent, simulation-specific analysis, design, and implementation, and eventually
verification, validation, and accreditation/certification. 4.) A singular means for
establishing re-use opportunities in the eventual simulation implementation by
identifying commonality in the relevant real world activities. And 5.) A library of re-
usable conceptual models for simulation development. [DM2001]

4.4.3 SISO Reference FOMs / BOMs

The Simulation Interoperability Standards Organization has coordinated efforts towards
establishing reference FOMs, or data interchange standards, for communities within
DOD. Reference FOM elements capture archetypes for interactions among simulation
entities. These partial baseline FOMs are referred to as Base Object Models, or BOMs. A
BOM consists of one or more classes, interactions, associated attributes, parameters, and
relevant parent class data. BOMs provide a distinct way to represent individual
simulation interaction patterns and components that can be used to build or modify a
federation or interoperable environment. The Basic Premise is that the design and
development of interoperable environment” should begin with the exploration of reusing
available interoperable simulation object model patterns and components (a.k.a. BOMSs).
[Gu2001]

ATM Modeling and Simulation Architecture Study Page 39

5 Conclusions

5.1 Overall Architecture

The general conclusion of this study is that the three Use Cases can be satisfied with one
architecture, with appropriate tuning for particular demands of each Use Case.

The key element is that, as described in Section 2, all of the scenarios have the potential
to be distributed, that is, run across multiple computers, and they share the need to be
able to compose simulations to create an integrated, multi-faceted representation of the
NAS. Thus, the simulation architecture should be built from a basis of interoperability
and integration, including integration of legacy software

EHLA Reference FOMs,
Analysis data models

Domain
Models

Models and
Simulators

Specific to Sim Engine !

<> | | Modeling Framework
Initialization [> (as provided by simulation
) gz engines) W
2a c
T 22 | One or more HLA- §
Data <:| Compliant T; Simulation
Logging Simulation Engines] Execution
< Management
mﬁ (e.g., SPEEDES, HLA- =
enabled FACET)
L EED \ HLARTI, CORBA J
Tooks HLA RTI, CORBA
Visualization

Figure 5.1.1: Reference run-time architecture with candidate technologies

HLA is the most mature mechanism for integrating heterogeneous, distributed
simulations, and so it is recommended that HLA be chosen as the backbone for
distributed simulation. A number of the simulation engines examined are already
compliant to one degree or another with HLA and so offer a foundation for building new
simulations. HLA was specifically designed for legacy integration of legacy ATM
simulations into HLA compliance is readily achievable. HLA also provides a proven
process for community-based development of simulation standards and systems via the
FEDEP. Thus, HLA is selected as the basis for run-time simulation integration.

The HLA RTI is not, however, the entire answer for analytical simulation integration.
HLA is primarily a publish/subscribe paradigm, with the exception of particular control.
Thus HLA offers no mechanism for remote method invocation (RMI), that is, for a
function call interface between simulations. Thus, as shown in Figure 5.1.1, the

ATM Modeling and Simulation Architecture Study Page 40

Integration/Communications layer of the architecture includes not only the RTI but also
CORBA (alternatively, some other equivalent mechanism such as the Microsoft SOAP
protocol could be used). RMI mechanisms could be used for, example, to allow
simulations to query a weather server (e.g., “What is the current visibility at SFO?”)
rather than have the weather server publish all of its weather information (e.g., “Here is

visibility information for all airports across the U.S.”). RMI can also be used in multi-run
initialization and other functions.

The last integration/communications mechanism is SQL, via ODBC or equivalent.
Databases by their very nature provide powerful data storage capabilities which can be
essential to management of large analytical data sets. Strict interpretation of HLA Rules
requires all FOM (that is, public) data to be passed via the RTI, meaning that only data
collection applications would be integrated with a database, however, in practice this rule
may be relaxed to allow other federates to load data directly from a database. The main
caveat in this area is that guaranteed ordering of data, that is, making sure that events and
data are time-tagged and stored in the order they transpired in the simulation can only be
achieved by coordinated data capture through the RTI and so individual federates should
not store their own data if maintenance of exact temporal ordering of collected data is
required.

There are two small caveats regarding HLA. As mentioned in Section 4.2.1, the HLA has
been applied more often in real-time than in fast-time applications. Thus, the available
COTS/GOTS generally lack the multi-run management features equivalent to those of the
ASAC Executive Assistant (see Section 4.3.1); these will have to be fleshed out for the
fast-time world. HLA also has some minor tweaks in terms of repeatable execution.
While all data, time and event traffic passed through the RTI can be made repeatable
through guaranteed ordering, some of the functions of the RTI itself, such as ownership
and declaration management, are not integrated with the time/event management
mechanisms. Thus, simulations which dynamically create entities and transfer ownership
of entities from one simulation to another may not be exactly repeatable using current
RTI technologies.

The remaining reference architecture components can be at least partially satisfied with
existing technologies, as previously summarized in Figure 5.1. It is recommended that,
for the sake of reuse, a small number of modeling frameworks / simulation engines (e.g.,
SPEEDES for high performance computing plus one simpler framework for smaller
simulation development) be adopted as the preferred tools for the community. Because of
the neutral nature of HLA the community would not, however be limited to using only
these engines.

Figure 6.1.1 once again shows the reference architecture, in this case with particular
technologies applied to the components of the architecture.

ATM Modeling and Simulation Architecture Study Page 41

5.2 Use Case 1: Fast-time Detailed Analysis

This Use Case requires a potentially large number of computers to handle the fidelity,
scenario size and multi-faceted representations that would be typical of this type of
analysis.

Figure 5.2.1 shows the reference architecture tailored to this Use Case. In this instance of
the architecture the federation consists of a large number of federates synchronized
through HLA. As shown in the figure, the federation may be composed of many different
types of simulations and may be built on different simulation engines, some of which
may themselves manage multiple processors (ref. Simulation Engine “B” in the figure).
The federation may include both native (or adapted) HLA simulations and wrapped
legacy simulations. The federation would use HLA’s time management services to
coordinate virtual time and would most likely be running as fast as possible without
trying to maintain any relationship to wall-clock time. The HLA RTI would also be used
for data distribution among simulations.

g 5
o] s8¢ s
Simulation . . I = =
Simulations 2 - N g S 58 % Data
§ .8 O < o o
- ERS 5 SRepositories
<3 0 W JaR¥)
T
Modeling Framework “A" Modeling Framework "B" s Y
4
Simulation Engine "A" Simulation Engine “B" [] [
) — e
Gatewa _[— [—
: HLA HLA HLA | HLA/XMI : HLA ¢
.. Intecration/Communications
Figure 5.2.1: Architecture as implemented for Fast-time Detailed Analysis

Since the volume of data to be collected may be large the Data Collection federate would
be its own computer or computers. In the STOW 97 system, the data collection federate
consisted of four data collection computers, each of which subscribed to and locally
stored a subset of the overall data stream. These computers were connected to a single
large database server; periodically each data collection machine would bulk load its data
into the database. This setup successfully supported a “collect everything” approach
where any and all simulation data could be queried ad hoc at run-time.

Simulation Execution Management would use HLA where possible. SEM may in
additional use RMI calls to the various federates as well as agents executing on each
machine to control execution of the federates and distribute non-run-time data (such as
initialization files), which would be encoded using XML. While it is not shown explicitly
in the diagram, RMI could also be used from within federates to gain access to servers
and utilities

ATM Modeling and Simulation Architecture Study Page 42

5.3 Use Case 2: Fast-time Conceptual Trades

Fast-time Conceptual Trades share many characteristics with Fast-time Detailed Analyses
and so the architectural instance shown in Figure 6.2.1 applies to this case as well. In this
Use Case the number of simultaneously executing simulations will typically be smaller.
The volume of data will be smaller as well and so in practice the multiple machines
shown in the diagram may collapse down to a small number, with Simulation Execution
Management and Data Collection sharing a host. For truly small simulations, the entire
federation may be executed on a single computer.

In current systems such as ASAC, conceptual tradeoft models are run not in parallel but
in series, integrated through common data. The proposed architecture supports this
methodology as well. Figure 5.3.1 shows how this would be implemented. Each
simulation in the chain would execute as its own small federation. These federations
would execute under the control of a SEM program that would persist across the multiple
federation executions. As in ASAC, chained models would be integrated by common data
definitions (indicated by the dashed arrow in the figure). Unlike the ASAC model, each
simulation program could be arbitrarily complex, where any one of the federation
executions in the chain could contain multiple federates.

As with the first Use Case, each federation execution would use HLA’s time management
services to coordinate virtual time and data distribution.

Sim

Execution Simulation 2 <

Management (e.g., Delay) ~§ bata
“Repositories

Simulation 1

(e.g., Capacity)

MR

Modeling Framework "A"

Modeling Framework "A"

Simulation Engine "A"

Figure 5.3.1: Architecture as implemented for sequential simulation execution of Fast-time
Conceptual Trades

5.4 Use Case 3: Real-time Virtual Simulators

Real-time Virtual Simulations have somewhat different characteristics than the previous
two Use Cases. A Virtual federation typically consists of a small number of very high
fidelity human-in-the-loop simulators augmented by a small number of simulations.
Figure 6.4.1 shows the architecture as implemented for this case.

In this instance the simulators are assumed to be in a sense “closed source” software, that
is, not easily amenable to modification. Consequently, while they are shown integrating
at run-time via HLA, they are not shown as having been adapted to accept XML-
formatted initialization data. This is usually the case for virtual trainers; immersive

ATM Modeling and Simulation Architecture Study Page 43

simulators used for human factors analyses may have more open source code and so may
be amenable to greater integration.

In a Real-time federation, federates may elect not to use the RTI’s time management
functions, instead running in loose synchronization through wall-clock time. Alternately,
the may operate with one federate regulating time, where that federate controls the

+ Additional Models
TN c c & (eg., traffic generation)
/ N\ .2 =)
’ Vo *g Data % §‘
¥+ =Repositories 99
[=}
a8 Hw=

Non HLA
simulator

Modeling Framework

HLA -enabled
simulator
HLA -enabled
simulator

Simulation engine

rHME HLA | " HLA |

; ! HLA
s T UG o | 1

Figure 5.4.1: Architecture as implemented for Real-time Virtual Simulations

synchronization with wall-clock. In this case the other federates would be subordinate to
the regulating federate. A Real-time federation may also elect, based on anticipated
network bottlenecks, to use best-effort rather than guaranteed delivery for some or all
messaging so as to avoid slowing down the federation due to communications delays.

Data collection in this environment typically involves less data than Use Case 1 and so
the data collector, while executing on its own hardware, will most likely not be overly
complex. The overall analysis may include collection of streams of data such as video or
audio. The RTT has been used to pass digitized audio data, however multimedia streams
use a great deal of bandwidth and so it may make sense to collect these streams
separately, perhaps time-tagged based on federation time. Figure 6.4.1 alludes to
collection of data outside of HLA this via the bent arrow leading to data collection; this
arrow indicates and alternate path of data collection — not for FOM data, but for other
types of analysis measures.

5.5 Recommended Next Steps

To move forward with implementation of the NAS-wide simulation architecture it is
important to take four steps. These steps, namely, implement prototypes, build
community, define data, and address issues may be addressed in series or in parallel.

First, this study has provided only a first cut at requirements for NAS domain use cases.
Many other considerations such as overall computational requirements, constraints from
within the user community, and so on must be addressed in greater detail as a system is
developed. The best way, however, to gain experience with the architecture is through
implementation. Successively more capable prototypes will help refine the architecture
and identify challenges particular to the domain.

ATM Modeling and Simulation Architecture Study Page 44

SAIC

Second, an underlying assumption of this study is that one of the goals of the NAS
simulation architecture is to build a community wherein many simulationists contribute
to an overall capability. Within the DOD it took a number of years to convince people of
the value of this approach, which carries with it the perceived downside of imposing
constraints on each developer which only serve to benefit other projects. DOD addressed
this through the creation of workshops where its simulation community collaboratively
developed standards and consequently developed a community focus and consensus”.
The NAS simulation community may be smaller and less far-flung than that of DOD,
however an architecture-based approach will be most successful if it is a shared vision.
One way to accomplish this is to begin a discussion within the community of the
appropriate domain models, Federation Object Models, XML DTDs and so on based on
analysis scenarios such as DAG-TM.

Last, as mentioned before the proposed architecture, while believed to be the best
available, has some areas of immature capability. There has been relatively little
investment within the DOD in distributed scenario setup/simulation initialization tools
and Monte Carlo multiple-run control. The NAS simulation community needs to begin to
identify and address those issues. This can be done in concert with DOD, which is
beginning to face those same issues in its simulation-based acquisition programs and in
concert with HLA tool vendors. If the NAS simulation community intends to build
community-wide repositories of models and data then it needs to evaluate model
management technologies (see, for example [Ar2000]). Finally, as already stated, run-
time is only one piece of the simulation lifecycle and so development of the simulation
run-time architecture should be harmonized with related efforts in the pre- and post- run-
time areas.

® When HLA was developed, DOD also encouraged its acceptance by mandating its use, however it was
born of an extant consensus of what the next step was in simulation.

ATM Modeling and Simulation Architecture Study Page 45

SAIC

Glossary and Acronyms

AATT Advanced Air Transportation Technologies

ATM Air Traffic Management

AVSTAR Aviation System Technology Advanced Research
BOM Base Object Model (see also Federation Object Model)

Cluster Computing

A mechanism for creating high performance virtual computers (up to super-
computer level) by interconnecting clusters of smaller computers, often through
distributed shared memory.

CMMS Conceptual Model of the Mission Space

Composition, The ability to create a larger whole (in this case, a broader or richer simulation

Composable representation) by combining various pieces of software into a jointly executable
whole.

CORBA Common Object Request Broker Architecture. A standard for remote method
invocation. Also offers various defined service interfaces.

COTS Commercial Off the Shelf

CPU Central Processing Unit

CPU Central Processing Unit

DAG-TM

Distributed Shared
Memory

A mechanism for extending virtual memory to multiple machines, allowing the
physical memory of multiple computers to be accessed as a single logical block
of memory.

DOF Degrees of Freedom

DTD Data Type Descriptor within XML

ETMS Enhanced Traffic Management System. An FAA database of flight data
information.

FEDEP HLA Federation Development and Execution Process

Federate A simulation that is a member of an HLA Federation.

Federation A collection of simulations which interoperate via the HLA RTI, using an agreed

upon set of data definitions (FOM).

Federation Object

A data model used to define the data which can be exchanged by a set of HLA

Model (FOM) simulations. Provides a standard for data interoperability.

Gateway A program or computer which serves to interconnect hardware or software with
differing protocols, for example, to connect a virtual simulator with HLA-based
simulations.

GOTS Government Off the Shelf

High Level See HLA

Architecture

HLA Department of Defense High Level Architecture for Modeling and Simulation. A

collection of processes, interface specifications and software for simulation
interoperability.

Multi-processor kernel

A simulation engine containing features such as optimistic scheduling which
explicitly attempt to enhance performance by making use of multiple processors
which may be available on a computer.

NAS

National Airspace System

Optimistic Scheduling

A mechanism for coordinating a computer simulation program running across a
multi-processor machine which allows one or more processors to run ahead in
time, knowing they may need to redo their computations based on the results of
computations on other processors.

QAT Quiet Aircraft Technology
Remote Method The ability for a computer program to invoke software running in a different
Invocation computer process or on a different computer as if it were a local function call.

ATM Modeling and Simulation Architecture Study

Page 46

SAIC

RMI Remote Method Invocation. A mechanism for a piece of software to invoke a
function executing in a different software process.

RTI Run-time Infrastructure. The software component of HLA (see HLA), offering
time management, event and data management and other inter-simulation
coordination functions.

RUC Rapid Update Cycle. A weather data format.

SEDRIS Synthetic Environment Data Representation and Interchange Specification

SEM Simulation Execution Management

Single-processor
kernel

A simulation engine which does not contain any features which explicitly attempt
to enhance performance by making use of multiple processors which may be
available on a computer.

SISO Simulation Interoperability Standards Organization

SOAP Simple Object Access Protocol. A method for remote method invocation based
on web protocols (HTTP).

SOM HLA Simulation Object Model

Symmetric Multi- A computing architecture characterized by tightly-coupled series of identical

processor (SMP) processors, usually operating on a single shared bank of memory. The parallel
nature of the machine is typically hidden from the user, with the operating system
managing allocation of processor time to programs.

Time Warp An optimistic scheduling algorithm for multi-processor computing.

Virtual Memory

Virtual memory is a technique that allows processes that may not be entirely in
the memory to execute by means of automatic storage allocation upon request.
The term virtual memory refers to the abstraction of separating logical memory--
memory as seen by the process—from physical memory--memory as seen by the
processor

XML

Extensible Markup Language. A standard mark-up language for data description.
Used to exchange data between applications.

ATM Modeling and Simulation Architecture Study Page 47

SAIC

Bibliography

[Ar2000] Aronson, J. and D. Wade. Benefits and Pitfalls in Composable Simulation. Proc. Spring
2000 Simulation Interoperability Workshop. Paper 00S-SIW-155. March 2000. Orlando,
FL.

[Be1997] Bennett, P.A. Rapid Development and Rehosting of Dynamic Graphical Interfaces.

October 1997. Available at
http://www.virtualprototypes.com/products_solutions/PDF/rehostingbennet.pdf.

[Da1999] Daniels, M. Integrating Simulation Technologies with Swarm. Available at
http://www.santafe.edu/~mgd/anlchicago.html.

[De2001] Distributed Environment for Simulation, Rapid Engineering and Experimentation
overview paper. Available at http://155.178.136.28/rdhfl/desireetxt.htm.

[DM1998] Defense Modeling and Simulation Office. HLA Interface Specification Version 1.3. 20
April 1998. Available at http://www.dmso.mil/briefs/war/hla/specs/main_body.pdf.

[DM1999] Defense Modeling and Simulation Office. HLA Federation Development and Execution
Process (FEDEP) Model. Version 1.5. 8 December 1999. Available at
http://www.dmso.mil/briefs/msdocs/guide/fedepv15.pdf.

[DM2001] Defense Modeling and simulation Office. Conceptual Model of theMission Space Home
Page. See http://www.dmso.mil/index.php?page=75.

[Er2001] Erzberger, H. The Automated Airspace Concept. Paper #160, 4™ USA/Europe Air Traffic
Management R&D Seminar. Dec 3-7, 2001. Santa Fe, NM. Available at
http://atm2001.eurocontrol.fr.

[Fu1993] Fujimoto, R. M. Parallel discrete event simulation: Will the field survive? ORSA Journal
on Computing. 5(3):213-230, Summer 1993.

[Gu2001] Gustavson, P., et. al. BOM Study Group Final Report. SISO-REF-005-2001. 15 May
2001. Available at http://www.sisostds.org.

[Hi2001] Hillman, R., Hanna, J. and Walter, M. Modeling and Simulation of the Joint Battlespace

Infosphere Scalability. MSIAC M&S Journal Online. Vol. 3, No. 1. Available at
http://www.msiac.dmso.mil.

[1p2000] Ippolito, C.A. and Pritchett, A.R. Software Architecture for a Reconfigurable Flight
Simulator. Proc. AIAA Modeling and Simulation Technologies Conference. 14-17 August,
2000. Denver, CO.

[Ma2001] VR-Link Product Brochure. Available at http://www.mak.com/vrlink.pdf.
[N12001] NIAC Home Page. See http://www.faa.gov/niac/.
[0S1998] Osim Simulation Module; A Commercial Simulation Development Product. March 1998.

Available at http://www.originalsim.com.
[0S1998b] The Osim S/M Architecture/ January 1998. Available at http://www.originalsim.com.

[0S2001] OriginalSim, Inc. Re-Usability of Legacy Software in an Object-Oriented Application
Framework. White Paper. Available at http://www.originalsim.com

[Pa2001] Pace, Dale. Simulation Conceptual Model Role in Determining Compatibility of
Candidate Simulations for a HLA Federation. Proc. Spring 2001 Simulation
Interoperability Workshop. Paper 01S-SIW-024. 25-30 March 2001. Orlando, FL.
Available at http://www.dmso.mil/briefs/war/vva/prod/01S-SIW-024.doc.

[Pr2000] Pritchett, A. R., Lee, S, et. al. Hybrid-System Simulation for National Airspace System

ATM Modeling and Simulation Architecture Study Page 48

SAIC
[Pr2001]

[R01997]
[R01999]
[R01999h]
[Sc2000]
[SD2000]

[SE2001]
[SP2000]

[St1999]

[TR2000]

[TR2001]
[TR2001b]

Safety Analysis. Proc. 2000 Winter Simulation Conference. 10-13 December 2000.

Pritchett, A., et. al. Examining Air Transportation Safety Issues Through Agent-Based
Simulation Incorporating Human Performance Models. Submitted for publication to
AIAA Journal of Aircraft.

Roberts, E. and Villani, J. ASAC Executive Assistant Architecture Description Summary.
NASA Contractor Report 201681. April 1997.

Roberts, E. and Kostiuk, P. Aviation System Analysis Capability. Executive Assistant
Analyses. NASA/CR-1999-209118. March 1999.

Roberts, E., et. al. Aviation System Analysis Capability. Executive Assistant
Development. NASA/CR-1999-209119. March 1999.

Schwartz, A. and Richards, J. The Aviation Integrated Reasoning Modeling Matrix
(AIRMM). December 2000.

Swarm Development Group. A Tutorial Introduction to Swarm. Available at
http://www.swarm.org/csss-tutorial.

See http://www.sedris.org.

SPEEDES User’s Guide. 17 November 2000. Document S024. Revision 2. Available at
http://www.speedes.com.

Steinman, J. S., et. al. Design of the HPC-RTI for the High-Level Architecture. Proc. Fall
1999 Simulation Interoperability Workshop. Paper 99F-SIW-067. 12-17 September 1999.
Orlando, FL.

TRANSIMS Press Release. Available at
http://www.lanl.gov/orgs/pa/News/100500.html#anchorl.

TRANSIMS Web site, http://transims.tsasa.lanl.gov.

TRANSIMS: Transportation Analysis Simulation System. Version 2.0 Documentation.
Volume 3, Modules. LANL Document LA-UR-00-1725. Available at [TR2001]

ATM Modeling and Simulation Architecture Study Page 49

